//-------------------------------------------------------------------------------------------------- // WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS. // // Set-up that's shared across all tests in this directory. In principle, this // config could be moved to lit.local.cfg. However, there are downstream users that // do not use these LIT config files. Hence why this is kept inline. // // DEFINE: %{sparsifier_opts} = enable-runtime-library=true // DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts} // DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}" // DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}" // DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils // DEFINE: %{run_libs_sve} = -shared-libs=%native_mlir_runner_utils,%native_mlir_c_runner_utils // DEFINE: %{run_opts} = -e main -entry-point-result=void // DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs} // DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs_sve} // // DEFINE: %{env} = //-------------------------------------------------------------------------------------------------- // RUN: %{compile} | %{run} | FileCheck %s // // Do the same run, but now do sparsification using sparse-iterator-based loops. // REDEFINE: %{sparsifier_opts} = sparse-emit-strategy=sparse-iterator // RUN: %{compile} | %{run} | FileCheck %s // #COO = #sparse_tensor.encoding<{ map = (d0, d1, d2, d3) -> ( d0 : compressed(nonunique), d1 : singleton(nonunique, soa), d2 : singleton(nonunique, soa), d3 : singleton(soa) ), explicitVal = 1 : i32 }> #VEC = #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed) }> module { // An example of vector reductions (lowered through sparse_tensor.iterate). func.func @sqsum(%arg0: tensor<2x3x4x5xi32, #COO>) -> tensor { %cst = arith.constant dense<0> : tensor %0 = linalg.generic { indexing_maps = [ affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>, affine_map<(d0, d1, d2, d3) -> ()> ], iterator_types = ["reduction", "reduction", "reduction", "reduction"] } ins(%arg0 : tensor<2x3x4x5xi32, #COO>) outs(%cst : tensor) { ^bb0(%in: i32, %out: i32): %1 = arith.muli %in, %in : i32 %2 = arith.addi %out, %1 : i32 linalg.yield %2 : i32 } -> tensor return %0 : tensor } // An example of vector addition (lowered through sparse_tensor.coiterate). func.func @vec_add(%arg0: tensor<4xi32, #VEC>, %arg1: tensor<4xi32, #VEC>) -> tensor<4xi32> { %cst = arith.constant dense<0> : tensor<4xi32> %0 = linalg.generic { indexing_maps = [ affine_map<(d0) -> (d0)>, affine_map<(d0) -> (d0)>, affine_map<(d0) -> (d0)> ], iterator_types = ["parallel"] } ins(%arg0, %arg1 : tensor<4xi32, #VEC>, tensor<4xi32, #VEC>) outs(%cst : tensor<4xi32>) { ^bb0(%in1: i32, %in2: i32, %out: i32): %2 = arith.addi %in1, %in2 : i32 linalg.yield %2 : i32 } -> tensor<4xi32> return %0 : tensor<4xi32> } func.func @main() { %c0 = arith.constant 0 : index %i0 = arith.constant 0 : i32 %cst = arith.constant sparse< [ [0, 1, 2, 3], [1, 1, 2, 3], [1, 2, 2, 3], [1, 2, 3, 4] ], [1, 1, 1, 1] > : tensor<2x3x4x5xi32> %l = arith.constant dense< [0, 1, 2, 3] > : tensor<4xi32> %r = arith.constant dense< [1, 0, 3, 0] > : tensor<4xi32> %input = sparse_tensor.convert %cst : tensor<2x3x4x5xi32> to tensor<2x3x4x5xi32, #COO> %0 = call @sqsum(%input) : (tensor<2x3x4x5xi32, #COO>) -> tensor %v = tensor.extract %0[] : tensor %lhs = sparse_tensor.convert %l : tensor<4xi32> to tensor<4xi32, #VEC> %rhs = sparse_tensor.convert %r : tensor<4xi32> to tensor<4xi32, #VEC> %add = call @vec_add(%lhs, %rhs) : (tensor<4xi32, #VEC>, tensor<4xi32, #VEC>) -> tensor<4xi32> // CHECK: 4 vector.print %v : i32 // CHECK-NEXT: ( 1, 1, 5, 3 ) %vec = vector.transfer_read %add[%c0], %i0 : tensor<4xi32>, vector<4xi32> vector.print %vec : vector<4xi32> bufferization.dealloc_tensor %input : tensor<2x3x4x5xi32, #COO> bufferization.dealloc_tensor %0 : tensor bufferization.dealloc_tensor %lhs : tensor<4xi32, #VEC> bufferization.dealloc_tensor %rhs : tensor<4xi32, #VEC> bufferization.dealloc_tensor %add : tensor<4xi32> return } }