//===-- Utils which wrap MPFR ---------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "MPFRUtils.h" #include "src/__support/CPP/StringView.h" #include "src/__support/FPUtil/FPBits.h" #include "src/__support/FPUtil/PlatformDefs.h" #include "utils/UnitTest/FPMatcher.h" #include #include #include #include #include #include #ifdef CUSTOM_MPFR_INCLUDER // Some downstream repos are monoliths carrying MPFR sources in their third // party directory. In such repos, including the MPFR header as // `#include ` is either disallowed or not possible. If that is the // case, a file named `CustomMPFRIncluder.h` should be added through which the // MPFR header can be included in manner allowed in that repo. #include "CustomMPFRIncluder.h" #else #include #endif template using FPBits = __llvm_libc::fputil::FPBits; namespace __llvm_libc { namespace testing { namespace mpfr { template struct Precision; template <> struct Precision { static constexpr unsigned int VALUE = 24; }; template <> struct Precision { static constexpr unsigned int VALUE = 53; }; #if defined(LONG_DOUBLE_IS_DOUBLE) template <> struct Precision { static constexpr unsigned int VALUE = 53; }; #elif defined(SPECIAL_X86_LONG_DOUBLE) template <> struct Precision { static constexpr unsigned int VALUE = 64; }; #else template <> struct Precision { static constexpr unsigned int VALUE = 113; }; #endif // A precision value which allows sufficiently large additional // precision compared to the floating point precision. template struct ExtraPrecision; template <> struct ExtraPrecision { static constexpr unsigned int VALUE = 128; }; template <> struct ExtraPrecision { static constexpr unsigned int VALUE = 256; }; template <> struct ExtraPrecision { static constexpr unsigned int VALUE = 256; }; // If the ulp tolerance is less than or equal to 0.5, we would check that the // result is rounded correctly with respect to the rounding mode by using the // same precision as the inputs. template static inline unsigned int get_precision(double ulp_tolerance) { if (ulp_tolerance <= 0.5) { return Precision::VALUE; } else { return ExtraPrecision::VALUE; } } static inline mpfr_rnd_t get_mpfr_rounding_mode(RoundingMode mode) { switch (mode) { case RoundingMode::Upward: return MPFR_RNDU; break; case RoundingMode::Downward: return MPFR_RNDD; break; case RoundingMode::TowardZero: return MPFR_RNDZ; break; case RoundingMode::Nearest: return MPFR_RNDN; break; } } class MPFRNumber { unsigned int mpfr_precision; mpfr_rnd_t mpfr_rounding; mpfr_t value; public: MPFRNumber() : mpfr_precision(256), mpfr_rounding(MPFR_RNDN) { mpfr_init2(value, mpfr_precision); } // We use explicit EnableIf specializations to disallow implicit // conversions. Implicit conversions can potentially lead to loss of // precision. template ::Value, int> = 0> explicit MPFRNumber(XType x, int precision = ExtraPrecision::VALUE, RoundingMode rounding = RoundingMode::Nearest) : mpfr_precision(precision), mpfr_rounding(get_mpfr_rounding_mode(rounding)) { mpfr_init2(value, mpfr_precision); mpfr_set_flt(value, x, mpfr_rounding); } template ::Value, int> = 0> explicit MPFRNumber(XType x, int precision = ExtraPrecision::VALUE, RoundingMode rounding = RoundingMode::Nearest) : mpfr_precision(precision), mpfr_rounding(get_mpfr_rounding_mode(rounding)) { mpfr_init2(value, mpfr_precision); mpfr_set_d(value, x, mpfr_rounding); } template ::Value, int> = 0> explicit MPFRNumber(XType x, int precision = ExtraPrecision::VALUE, RoundingMode rounding = RoundingMode::Nearest) : mpfr_precision(precision), mpfr_rounding(get_mpfr_rounding_mode(rounding)) { mpfr_init2(value, mpfr_precision); mpfr_set_ld(value, x, mpfr_rounding); } template ::Value, int> = 0> explicit MPFRNumber(XType x, int precision = ExtraPrecision::VALUE, RoundingMode rounding = RoundingMode::Nearest) : mpfr_precision(precision), mpfr_rounding(get_mpfr_rounding_mode(rounding)) { mpfr_init2(value, mpfr_precision); mpfr_set_sj(value, x, mpfr_rounding); } MPFRNumber(const MPFRNumber &other) : mpfr_precision(other.mpfr_precision), mpfr_rounding(other.mpfr_rounding) { mpfr_init2(value, mpfr_precision); mpfr_set(value, other.value, mpfr_rounding); } ~MPFRNumber() { mpfr_clear(value); } MPFRNumber &operator=(const MPFRNumber &rhs) { mpfr_precision = rhs.mpfr_precision; mpfr_rounding = rhs.mpfr_rounding; mpfr_set(value, rhs.value, mpfr_rounding); return *this; } MPFRNumber abs() const { MPFRNumber result(*this); mpfr_abs(result.value, value, mpfr_rounding); return result; } MPFRNumber ceil() const { MPFRNumber result(*this); mpfr_ceil(result.value, value); return result; } MPFRNumber cos() const { MPFRNumber result(*this); mpfr_cos(result.value, value, mpfr_rounding); return result; } MPFRNumber exp() const { MPFRNumber result(*this); mpfr_exp(result.value, value, mpfr_rounding); return result; } MPFRNumber exp2() const { MPFRNumber result(*this); mpfr_exp2(result.value, value, mpfr_rounding); return result; } MPFRNumber expm1() const { MPFRNumber result(*this); mpfr_expm1(result.value, value, mpfr_rounding); return result; } MPFRNumber floor() const { MPFRNumber result(*this); mpfr_floor(result.value, value); return result; } MPFRNumber fmod(const MPFRNumber &b) { MPFRNumber result(*this); mpfr_fmod(result.value, value, b.value, mpfr_rounding); return result; } MPFRNumber frexp(int &exp) { MPFRNumber result(*this); mpfr_exp_t resultExp; mpfr_frexp(&resultExp, result.value, value, mpfr_rounding); exp = resultExp; return result; } MPFRNumber hypot(const MPFRNumber &b) { MPFRNumber result(*this); mpfr_hypot(result.value, value, b.value, mpfr_rounding); return result; } MPFRNumber log() const { MPFRNumber result(*this); mpfr_log(result.value, value, mpfr_rounding); return result; } MPFRNumber log2() const { MPFRNumber result(*this); mpfr_log2(result.value, value, mpfr_rounding); return result; } MPFRNumber log10() const { MPFRNumber result(*this); mpfr_log10(result.value, value, mpfr_rounding); return result; } MPFRNumber log1p() const { MPFRNumber result(*this); mpfr_log1p(result.value, value, mpfr_rounding); return result; } MPFRNumber remquo(const MPFRNumber &divisor, int "ient) { MPFRNumber remainder(*this); long q; mpfr_remquo(remainder.value, &q, value, divisor.value, mpfr_rounding); quotient = q; return remainder; } MPFRNumber round() const { MPFRNumber result(*this); mpfr_round(result.value, value); return result; } bool round_to_long(long &result) const { // We first calculate the rounded value. This way, when converting // to long using mpfr_get_si, the rounding direction of MPFR_RNDN // (or any other rounding mode), does not have an influence. MPFRNumber roundedValue = round(); mpfr_clear_erangeflag(); result = mpfr_get_si(roundedValue.value, MPFR_RNDN); return mpfr_erangeflag_p(); } bool round_to_long(mpfr_rnd_t rnd, long &result) const { MPFRNumber rint_result(*this); mpfr_rint(rint_result.value, value, rnd); return rint_result.round_to_long(result); } MPFRNumber rint(mpfr_rnd_t rnd) const { MPFRNumber result(*this); mpfr_rint(result.value, value, rnd); return result; } MPFRNumber mod_2pi() const { MPFRNumber result(0.0, 1280); MPFRNumber _2pi(0.0, 1280); mpfr_const_pi(_2pi.value, MPFR_RNDN); mpfr_mul_si(_2pi.value, _2pi.value, 2, MPFR_RNDN); mpfr_fmod(result.value, value, _2pi.value, MPFR_RNDN); return result; } MPFRNumber mod_pi_over_2() const { MPFRNumber result(0.0, 1280); MPFRNumber pi_over_2(0.0, 1280); mpfr_const_pi(pi_over_2.value, MPFR_RNDN); mpfr_mul_d(pi_over_2.value, pi_over_2.value, 0.5, MPFR_RNDN); mpfr_fmod(result.value, value, pi_over_2.value, MPFR_RNDN); return result; } MPFRNumber mod_pi_over_4() const { MPFRNumber result(0.0, 1280); MPFRNumber pi_over_4(0.0, 1280); mpfr_const_pi(pi_over_4.value, MPFR_RNDN); mpfr_mul_d(pi_over_4.value, pi_over_4.value, 0.25, MPFR_RNDN); mpfr_fmod(result.value, value, pi_over_4.value, MPFR_RNDN); return result; } MPFRNumber sin() const { MPFRNumber result(*this); mpfr_sin(result.value, value, mpfr_rounding); return result; } MPFRNumber sqrt() const { MPFRNumber result(*this); mpfr_sqrt(result.value, value, mpfr_rounding); return result; } MPFRNumber tan() const { MPFRNumber result(*this); mpfr_tan(result.value, value, mpfr_rounding); return result; } MPFRNumber trunc() const { MPFRNumber result(*this); mpfr_trunc(result.value, value); return result; } MPFRNumber fma(const MPFRNumber &b, const MPFRNumber &c) { MPFRNumber result(*this); mpfr_fma(result.value, value, b.value, c.value, mpfr_rounding); return result; } std::string str() const { // 200 bytes should be more than sufficient to hold a 100-digit number // plus additional bytes for the decimal point, '-' sign etc. constexpr size_t printBufSize = 200; char buffer[printBufSize]; mpfr_snprintf(buffer, printBufSize, "%100.50Rf", value); cpp::StringView view(buffer); view = view.trim(' '); return std::string(view.data()); } // These functions are useful for debugging. template T as() const; void dump(const char *msg) const { mpfr_printf("%s%.128Rf\n", msg, value); } // Return the ULP (units-in-the-last-place) difference between the // stored MPFR and a floating point number. // // We define ULP difference as follows: // If exponents of this value and the |input| are same, then: // ULP(this_value, input) = abs(this_value - input) / eps(input) // else: // max = max(abs(this_value), abs(input)) // min = min(abs(this_value), abs(input)) // maxExponent = exponent(max) // ULP(this_value, input) = (max - 2^maxExponent) / eps(max) + // (2^maxExponent - min) / eps(min) // // Remarks: // 1. A ULP of 0.0 will imply that the value is correctly rounded. // 2. We expect that this value and the value to be compared (the [input] // argument) are reasonable close, and we will provide an upper bound // of ULP value for testing. Morever, most of the fractional parts of // ULP value do not matter much, so using double as the return type // should be good enough. // 3. For close enough values (values which don't diff in their exponent by // not more than 1), a ULP difference of N indicates a bit distance // of N between this number and [input]. // 4. A values of +0.0 and -0.0 are treated as equal. template cpp::EnableIfType::Value, double> ulp(T input) { T thisAsT = as(); if (thisAsT == input) return T(0.0); int thisExponent = fputil::FPBits(thisAsT).get_exponent(); int inputExponent = fputil::FPBits(input).get_exponent(); // Adjust the exponents for denormal numbers. if (fputil::FPBits(thisAsT).get_unbiased_exponent() == 0) ++thisExponent; if (fputil::FPBits(input).get_unbiased_exponent() == 0) ++inputExponent; if (thisAsT * input < 0 || thisExponent == inputExponent) { MPFRNumber inputMPFR(input); mpfr_sub(inputMPFR.value, value, inputMPFR.value, MPFR_RNDN); mpfr_abs(inputMPFR.value, inputMPFR.value, MPFR_RNDN); mpfr_mul_2si(inputMPFR.value, inputMPFR.value, -thisExponent + int(fputil::MantissaWidth::VALUE), MPFR_RNDN); return inputMPFR.as(); } // If the control reaches here, it means that this number and input are // of the same sign but different exponent. In such a case, ULP error is // calculated as sum of two parts. thisAsT = std::abs(thisAsT); input = std::abs(input); T min = thisAsT > input ? input : thisAsT; T max = thisAsT > input ? thisAsT : input; int minExponent = fputil::FPBits(min).get_exponent(); int maxExponent = fputil::FPBits(max).get_exponent(); // Adjust the exponents for denormal numbers. if (fputil::FPBits(min).get_unbiased_exponent() == 0) ++minExponent; if (fputil::FPBits(max).get_unbiased_exponent() == 0) ++maxExponent; MPFRNumber minMPFR(min); MPFRNumber maxMPFR(max); MPFRNumber pivot(uint32_t(1)); mpfr_mul_2si(pivot.value, pivot.value, maxExponent, MPFR_RNDN); mpfr_sub(minMPFR.value, pivot.value, minMPFR.value, MPFR_RNDN); mpfr_mul_2si(minMPFR.value, minMPFR.value, -minExponent + int(fputil::MantissaWidth::VALUE), MPFR_RNDN); mpfr_sub(maxMPFR.value, maxMPFR.value, pivot.value, MPFR_RNDN); mpfr_mul_2si(maxMPFR.value, maxMPFR.value, -maxExponent + int(fputil::MantissaWidth::VALUE), MPFR_RNDN); mpfr_add(minMPFR.value, minMPFR.value, maxMPFR.value, MPFR_RNDN); return minMPFR.as(); } }; template <> float MPFRNumber::as() const { return mpfr_get_flt(value, mpfr_rounding); } template <> double MPFRNumber::as() const { return mpfr_get_d(value, mpfr_rounding); } template <> long double MPFRNumber::as() const { return mpfr_get_ld(value, mpfr_rounding); } namespace internal { template cpp::EnableIfType::Value, MPFRNumber> unary_operation(Operation op, InputType input, unsigned int precision, RoundingMode rounding) { MPFRNumber mpfrInput(input, precision, rounding); switch (op) { case Operation::Abs: return mpfrInput.abs(); case Operation::Ceil: return mpfrInput.ceil(); case Operation::Cos: return mpfrInput.cos(); case Operation::Exp: return mpfrInput.exp(); case Operation::Exp2: return mpfrInput.exp2(); case Operation::Expm1: return mpfrInput.expm1(); case Operation::Floor: return mpfrInput.floor(); case Operation::Log: return mpfrInput.log(); case Operation::Log2: return mpfrInput.log2(); case Operation::Log10: return mpfrInput.log10(); case Operation::Log1p: return mpfrInput.log1p(); case Operation::Mod2PI: return mpfrInput.mod_2pi(); case Operation::ModPIOver2: return mpfrInput.mod_pi_over_2(); case Operation::ModPIOver4: return mpfrInput.mod_pi_over_4(); case Operation::Round: return mpfrInput.round(); case Operation::Sin: return mpfrInput.sin(); case Operation::Sqrt: return mpfrInput.sqrt(); case Operation::Tan: return mpfrInput.tan(); case Operation::Trunc: return mpfrInput.trunc(); default: __builtin_unreachable(); } } template cpp::EnableIfType::Value, MPFRNumber> unary_operation_two_outputs(Operation op, InputType input, int &output, unsigned int precision, RoundingMode rounding) { MPFRNumber mpfrInput(input, precision, rounding); switch (op) { case Operation::Frexp: return mpfrInput.frexp(output); default: __builtin_unreachable(); } } template cpp::EnableIfType::Value, MPFRNumber> binary_operation_one_output(Operation op, InputType x, InputType y, unsigned int precision, RoundingMode rounding) { MPFRNumber inputX(x, precision, rounding); MPFRNumber inputY(y, precision, rounding); switch (op) { case Operation::Fmod: return inputX.fmod(inputY); case Operation::Hypot: return inputX.hypot(inputY); default: __builtin_unreachable(); } } template cpp::EnableIfType::Value, MPFRNumber> binary_operation_two_outputs(Operation op, InputType x, InputType y, int &output, unsigned int precision, RoundingMode rounding) { MPFRNumber inputX(x, precision, rounding); MPFRNumber inputY(y, precision, rounding); switch (op) { case Operation::RemQuo: return inputX.remquo(inputY, output); default: __builtin_unreachable(); } } template cpp::EnableIfType::Value, MPFRNumber> ternary_operation_one_output(Operation op, InputType x, InputType y, InputType z, unsigned int precision, RoundingMode rounding) { // For FMA function, we just need to compare with the mpfr_fma with the same // precision as InputType. Using higher precision as the intermediate results // to compare might incorrectly fail due to double-rounding errors. MPFRNumber inputX(x, precision, rounding); MPFRNumber inputY(y, precision, rounding); MPFRNumber inputZ(z, precision, rounding); switch (op) { case Operation::Fma: return inputX.fma(inputY, inputZ); default: __builtin_unreachable(); } } // Remark: For all the explain_*_error functions, we will use std::stringstream // to build the complete error messages before sending it to the outstream `OS` // once at the end. This will stop the error messages from interleaving when // the tests are running concurrently. template void explain_unary_operation_single_output_error(Operation op, T input, T matchValue, double ulp_tolerance, RoundingMode rounding, testutils::StreamWrapper &OS) { unsigned int precision = get_precision(ulp_tolerance); MPFRNumber mpfrInput(input, precision); MPFRNumber mpfr_result; mpfr_result = unary_operation(op, input, precision, rounding); MPFRNumber mpfrMatchValue(matchValue); std::stringstream ss; ss << "Match value not within tolerance value of MPFR result:\n" << " Input decimal: " << mpfrInput.str() << '\n'; __llvm_libc::fputil::testing::describeValue(" Input bits: ", input, ss); ss << '\n' << " Match decimal: " << mpfrMatchValue.str() << '\n'; __llvm_libc::fputil::testing::describeValue(" Match bits: ", matchValue, ss); ss << '\n' << " MPFR result: " << mpfr_result.str() << '\n'; __llvm_libc::fputil::testing::describeValue( " MPFR rounded: ", mpfr_result.as(), ss); ss << '\n'; ss << " ULP error: " << std::to_string(mpfr_result.ulp(matchValue)) << '\n'; OS << ss.str(); } template void explain_unary_operation_single_output_error(Operation op, float, float, double, RoundingMode, testutils::StreamWrapper &); template void explain_unary_operation_single_output_error( Operation op, double, double, double, RoundingMode, testutils::StreamWrapper &); template void explain_unary_operation_single_output_error( Operation op, long double, long double, double, RoundingMode, testutils::StreamWrapper &); template void explain_unary_operation_two_outputs_error( Operation op, T input, const BinaryOutput &libc_result, double ulp_tolerance, RoundingMode rounding, testutils::StreamWrapper &OS) { unsigned int precision = get_precision(ulp_tolerance); MPFRNumber mpfrInput(input, precision); int mpfrIntResult; MPFRNumber mpfr_result = unary_operation_two_outputs(op, input, mpfrIntResult, precision, rounding); std::stringstream ss; if (mpfrIntResult != libc_result.i) { ss << "MPFR integral result: " << mpfrIntResult << '\n' << "Libc integral result: " << libc_result.i << '\n'; } else { ss << "Integral result from libc matches integral result from MPFR.\n"; } MPFRNumber mpfrMatchValue(libc_result.f); ss << "Libc floating point result is not within tolerance value of the MPFR " << "result.\n\n"; ss << " Input decimal: " << mpfrInput.str() << "\n\n"; ss << "Libc floating point value: " << mpfrMatchValue.str() << '\n'; __llvm_libc::fputil::testing::describeValue( " Libc floating point bits: ", libc_result.f, ss); ss << "\n\n"; ss << " MPFR result: " << mpfr_result.str() << '\n'; __llvm_libc::fputil::testing::describeValue( " MPFR rounded: ", mpfr_result.as(), ss); ss << '\n' << " ULP error: " << std::to_string(mpfr_result.ulp(libc_result.f)) << '\n'; OS << ss.str(); } template void explain_unary_operation_two_outputs_error( Operation, float, const BinaryOutput &, double, RoundingMode, testutils::StreamWrapper &); template void explain_unary_operation_two_outputs_error( Operation, double, const BinaryOutput &, double, RoundingMode, testutils::StreamWrapper &); template void explain_unary_operation_two_outputs_error( Operation, long double, const BinaryOutput &, double, RoundingMode, testutils::StreamWrapper &); template void explain_binary_operation_two_outputs_error( Operation op, const BinaryInput &input, const BinaryOutput &libc_result, double ulp_tolerance, RoundingMode rounding, testutils::StreamWrapper &OS) { unsigned int precision = get_precision(ulp_tolerance); MPFRNumber mpfrX(input.x, precision); MPFRNumber mpfrY(input.y, precision); int mpfrIntResult; MPFRNumber mpfr_result = binary_operation_two_outputs( op, input.x, input.y, mpfrIntResult, precision, rounding); MPFRNumber mpfrMatchValue(libc_result.f); std::stringstream ss; ss << "Input decimal: x: " << mpfrX.str() << " y: " << mpfrY.str() << '\n' << "MPFR integral result: " << mpfrIntResult << '\n' << "Libc integral result: " << libc_result.i << '\n' << "Libc floating point result: " << mpfrMatchValue.str() << '\n' << " MPFR result: " << mpfr_result.str() << '\n'; __llvm_libc::fputil::testing::describeValue( "Libc floating point result bits: ", libc_result.f, ss); __llvm_libc::fputil::testing::describeValue( " MPFR rounded bits: ", mpfr_result.as(), ss); ss << "ULP error: " << std::to_string(mpfr_result.ulp(libc_result.f)) << '\n'; OS << ss.str(); } template void explain_binary_operation_two_outputs_error( Operation, const BinaryInput &, const BinaryOutput &, double, RoundingMode, testutils::StreamWrapper &); template void explain_binary_operation_two_outputs_error( Operation, const BinaryInput &, const BinaryOutput &, double, RoundingMode, testutils::StreamWrapper &); template void explain_binary_operation_two_outputs_error( Operation, const BinaryInput &, const BinaryOutput &, double, RoundingMode, testutils::StreamWrapper &); template void explain_binary_operation_one_output_error( Operation op, const BinaryInput &input, T libc_result, double ulp_tolerance, RoundingMode rounding, testutils::StreamWrapper &OS) { unsigned int precision = get_precision(ulp_tolerance); MPFRNumber mpfrX(input.x, precision); MPFRNumber mpfrY(input.y, precision); FPBits xbits(input.x); FPBits ybits(input.y); MPFRNumber mpfr_result = binary_operation_one_output(op, input.x, input.y, precision, rounding); MPFRNumber mpfrMatchValue(libc_result); std::stringstream ss; ss << "Input decimal: x: " << mpfrX.str() << " y: " << mpfrY.str() << '\n'; __llvm_libc::fputil::testing::describeValue("First input bits: ", input.x, ss); __llvm_libc::fputil::testing::describeValue("Second input bits: ", input.y, ss); ss << "Libc result: " << mpfrMatchValue.str() << '\n' << "MPFR result: " << mpfr_result.str() << '\n'; __llvm_libc::fputil::testing::describeValue( "Libc floating point result bits: ", libc_result, ss); __llvm_libc::fputil::testing::describeValue( " MPFR rounded bits: ", mpfr_result.as(), ss); ss << "ULP error: " << std::to_string(mpfr_result.ulp(libc_result)) << '\n'; OS << ss.str(); } template void explain_binary_operation_one_output_error( Operation, const BinaryInput &, float, double, RoundingMode, testutils::StreamWrapper &); template void explain_binary_operation_one_output_error( Operation, const BinaryInput &, double, double, RoundingMode, testutils::StreamWrapper &); template void explain_binary_operation_one_output_error( Operation, const BinaryInput &, long double, double, RoundingMode, testutils::StreamWrapper &); template void explain_ternary_operation_one_output_error( Operation op, const TernaryInput &input, T libc_result, double ulp_tolerance, RoundingMode rounding, testutils::StreamWrapper &OS) { unsigned int precision = get_precision(ulp_tolerance); MPFRNumber mpfrX(input.x, precision); MPFRNumber mpfrY(input.y, precision); MPFRNumber mpfrZ(input.z, precision); FPBits xbits(input.x); FPBits ybits(input.y); FPBits zbits(input.z); MPFRNumber mpfr_result = ternary_operation_one_output( op, input.x, input.y, input.z, precision, rounding); MPFRNumber mpfrMatchValue(libc_result); std::stringstream ss; ss << "Input decimal: x: " << mpfrX.str() << " y: " << mpfrY.str() << " z: " << mpfrZ.str() << '\n'; __llvm_libc::fputil::testing::describeValue("First input bits: ", input.x, ss); __llvm_libc::fputil::testing::describeValue("Second input bits: ", input.y, ss); __llvm_libc::fputil::testing::describeValue("Third input bits: ", input.z, ss); ss << "Libc result: " << mpfrMatchValue.str() << '\n' << "MPFR result: " << mpfr_result.str() << '\n'; __llvm_libc::fputil::testing::describeValue( "Libc floating point result bits: ", libc_result, ss); __llvm_libc::fputil::testing::describeValue( " MPFR rounded bits: ", mpfr_result.as(), ss); ss << "ULP error: " << std::to_string(mpfr_result.ulp(libc_result)) << '\n'; OS << ss.str(); } template void explain_ternary_operation_one_output_error( Operation, const TernaryInput &, float, double, RoundingMode, testutils::StreamWrapper &); template void explain_ternary_operation_one_output_error( Operation, const TernaryInput &, double, double, RoundingMode, testutils::StreamWrapper &); template void explain_ternary_operation_one_output_error( Operation, const TernaryInput &, long double, double, RoundingMode, testutils::StreamWrapper &); template bool compare_unary_operation_single_output(Operation op, T input, T libc_result, double ulp_tolerance, RoundingMode rounding) { unsigned int precision = get_precision(ulp_tolerance); MPFRNumber mpfr_result; mpfr_result = unary_operation(op, input, precision, rounding); double ulp = mpfr_result.ulp(libc_result); return (ulp <= ulp_tolerance); } template bool compare_unary_operation_single_output(Operation, float, float, double, RoundingMode); template bool compare_unary_operation_single_output(Operation, double, double, double, RoundingMode); template bool compare_unary_operation_single_output( Operation, long double, long double, double, RoundingMode); template bool compare_unary_operation_two_outputs(Operation op, T input, const BinaryOutput &libc_result, double ulp_tolerance, RoundingMode rounding) { int mpfrIntResult; unsigned int precision = get_precision(ulp_tolerance); MPFRNumber mpfr_result = unary_operation_two_outputs(op, input, mpfrIntResult, precision, rounding); double ulp = mpfr_result.ulp(libc_result.f); if (mpfrIntResult != libc_result.i) return false; return (ulp <= ulp_tolerance); } template bool compare_unary_operation_two_outputs( Operation, float, const BinaryOutput &, double, RoundingMode); template bool compare_unary_operation_two_outputs( Operation, double, const BinaryOutput &, double, RoundingMode); template bool compare_unary_operation_two_outputs( Operation, long double, const BinaryOutput &, double, RoundingMode); template bool compare_binary_operation_two_outputs(Operation op, const BinaryInput &input, const BinaryOutput &libc_result, double ulp_tolerance, RoundingMode rounding) { int mpfrIntResult; unsigned int precision = get_precision(ulp_tolerance); MPFRNumber mpfr_result = binary_operation_two_outputs( op, input.x, input.y, mpfrIntResult, precision, rounding); double ulp = mpfr_result.ulp(libc_result.f); if (mpfrIntResult != libc_result.i) { if (op == Operation::RemQuo) { if ((0x7 & mpfrIntResult) != (0x7 & libc_result.i)) return false; } else { return false; } } return (ulp <= ulp_tolerance); } template bool compare_binary_operation_two_outputs( Operation, const BinaryInput &, const BinaryOutput &, double, RoundingMode); template bool compare_binary_operation_two_outputs( Operation, const BinaryInput &, const BinaryOutput &, double, RoundingMode); template bool compare_binary_operation_two_outputs( Operation, const BinaryInput &, const BinaryOutput &, double, RoundingMode); template bool compare_binary_operation_one_output(Operation op, const BinaryInput &input, T libc_result, double ulp_tolerance, RoundingMode rounding) { unsigned int precision = get_precision(ulp_tolerance); MPFRNumber mpfr_result = binary_operation_one_output(op, input.x, input.y, precision, rounding); double ulp = mpfr_result.ulp(libc_result); return (ulp <= ulp_tolerance); } template bool compare_binary_operation_one_output( Operation, const BinaryInput &, float, double, RoundingMode); template bool compare_binary_operation_one_output( Operation, const BinaryInput &, double, double, RoundingMode); template bool compare_binary_operation_one_output( Operation, const BinaryInput &, long double, double, RoundingMode); template bool compare_ternary_operation_one_output(Operation op, const TernaryInput &input, T libc_result, double ulp_tolerance, RoundingMode rounding) { unsigned int precision = get_precision(ulp_tolerance); MPFRNumber mpfr_result = ternary_operation_one_output( op, input.x, input.y, input.z, precision, rounding); double ulp = mpfr_result.ulp(libc_result); return (ulp <= ulp_tolerance); } template bool compare_ternary_operation_one_output( Operation, const TernaryInput &, float, double, RoundingMode); template bool compare_ternary_operation_one_output( Operation, const TernaryInput &, double, double, RoundingMode); template bool compare_ternary_operation_one_output( Operation, const TernaryInput &, long double, double, RoundingMode); } // namespace internal template bool round_to_long(T x, long &result) { MPFRNumber mpfr(x); return mpfr.round_to_long(result); } template bool round_to_long(float, long &); template bool round_to_long(double, long &); template bool round_to_long(long double, long &); template bool round_to_long(T x, RoundingMode mode, long &result) { MPFRNumber mpfr(x); return mpfr.round_to_long(get_mpfr_rounding_mode(mode), result); } template bool round_to_long(float, RoundingMode, long &); template bool round_to_long(double, RoundingMode, long &); template bool round_to_long(long double, RoundingMode, long &); template T round(T x, RoundingMode mode) { MPFRNumber mpfr(x); MPFRNumber result = mpfr.rint(get_mpfr_rounding_mode(mode)); return result.as(); } template float round(float, RoundingMode); template double round(double, RoundingMode); template long double round(long double, RoundingMode); } // namespace mpfr } // namespace testing } // namespace __llvm_libc