//===- ScopHelper.cpp - Some Helper Functions for Scop. ------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Small functions that help with Scop and LLVM-IR. // //===----------------------------------------------------------------------===// #include "polly/Support/ScopHelper.h" #include "polly/ScopInfo.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/RegionInfo.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/IR/CFG.h" #include "llvm/Support/Debug.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" using namespace llvm; #define DEBUG_TYPE "polly-scop-helper" // Helper function for Scop // TODO: Add assertion to not allow parameter to be null //===----------------------------------------------------------------------===// // Temporary Hack for extended region tree. // Cast the region to loop if there is a loop have the same header and exit. Loop *polly::castToLoop(const Region &R, LoopInfo &LI) { BasicBlock *entry = R.getEntry(); if (!LI.isLoopHeader(entry)) return 0; Loop *L = LI.getLoopFor(entry); BasicBlock *exit = L->getExitBlock(); // Is the loop with multiple exits? if (!exit) return 0; if (exit != R.getExit()) { // SubRegion/ParentRegion with the same entry. assert((R.getNode(R.getEntry())->isSubRegion() || R.getParent()->getEntry() == entry) && "Expect the loop is the smaller or bigger region"); return 0; } return L; } Value *polly::getPointerOperand(Instruction &Inst) { if (LoadInst *load = dyn_cast(&Inst)) return load->getPointerOperand(); else if (StoreInst *store = dyn_cast(&Inst)) return store->getPointerOperand(); else if (GetElementPtrInst *gep = dyn_cast(&Inst)) return gep->getPointerOperand(); return 0; } bool polly::hasInvokeEdge(const PHINode *PN) { for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) if (InvokeInst *II = dyn_cast(PN->getIncomingValue(i))) if (II->getParent() == PN->getIncomingBlock(i)) return true; return false; } // Ensures that there is just one predecessor to the entry node from outside the // region. // The identity of the region entry node is preserved. static void simplifyRegionEntry(Region *R, DominatorTree *DT, LoopInfo *LI, RegionInfo *RI) { BasicBlock *EnteringBB = R->getEnteringBlock(); BasicBlock *Entry = R->getEntry(); // Before (one of): // // \ / // // EnteringBB // // | \------> // // \ / | // // Entry <--\ Entry <--\ // // / \ / / \ / // // .... .... // // Create single entry edge if the region has multiple entry edges. if (!EnteringBB) { SmallVector Preds; for (BasicBlock *P : predecessors(Entry)) if (!R->contains(P)) Preds.push_back(P); BasicBlock *NewEntering = SplitBlockPredecessors(Entry, Preds, ".region_entering", DT, LI); if (RI) { // The exit block of predecessing regions must be changed to NewEntering for (BasicBlock *ExitPred : predecessors(NewEntering)) { Region *RegionOfPred = RI->getRegionFor(ExitPred); if (RegionOfPred->getExit() != Entry) continue; while (!RegionOfPred->isTopLevelRegion() && RegionOfPred->getExit() == Entry) { RegionOfPred->replaceExit(NewEntering); RegionOfPred = RegionOfPred->getParent(); } } // Make all ancestors use EnteringBB as entry; there might be edges to it Region *AncestorR = R->getParent(); RI->setRegionFor(NewEntering, AncestorR); while (!AncestorR->isTopLevelRegion() && AncestorR->getEntry() == Entry) { AncestorR->replaceEntry(NewEntering); AncestorR = AncestorR->getParent(); } } EnteringBB = NewEntering; } assert(R->getEnteringBlock() == EnteringBB); // After: // // \ / // // EnteringBB // // | // // | // // Entry <--\ // // / \ / // // .... // } // Ensure that the region has a single block that branches to the exit node. static void simplifyRegionExit(Region *R, DominatorTree *DT, LoopInfo *LI, RegionInfo *RI) { BasicBlock *ExitBB = R->getExit(); BasicBlock *ExitingBB = R->getExitingBlock(); // Before: // // (Region) ______/ // // \ | / // // ExitBB // // / \ // if (!ExitingBB) { SmallVector Preds; for (BasicBlock *P : predecessors(ExitBB)) if (R->contains(P)) Preds.push_back(P); // Preds[0] Preds[1] otherBB // // \ | ________/ // // \ | / // // BB // ExitingBB = SplitBlockPredecessors(ExitBB, Preds, ".region_exiting", DT, LI); // Preds[0] Preds[1] otherBB // // \ / / // // BB.region_exiting / // // \ / // // BB // if (RI) RI->setRegionFor(ExitingBB, R); // Change the exit of nested regions, but not the region itself, R->replaceExitRecursive(ExitingBB); R->replaceExit(ExitBB); } assert(ExitingBB == R->getExitingBlock()); // After: // // \ / // // ExitingBB _____/ // // \ / // // ExitBB // // / \ // } void polly::simplifyRegion(Region *R, DominatorTree *DT, LoopInfo *LI, RegionInfo *RI) { assert(R && !R->isTopLevelRegion()); assert(!RI || RI == R->getRegionInfo()); assert((!RI || DT) && "RegionInfo requires DominatorTree to be updated as well"); simplifyRegionEntry(R, DT, LI, RI); simplifyRegionExit(R, DT, LI, RI); assert(R->isSimple()); } // Split the block into two successive blocks. // // Like llvm::SplitBlock, but also preserves RegionInfo static BasicBlock *splitBlock(BasicBlock *Old, Instruction *SplitPt, DominatorTree *DT, llvm::LoopInfo *LI, RegionInfo *RI) { assert(Old && SplitPt); // Before: // // \ / // // Old // // / \ // BasicBlock *NewBlock = llvm::SplitBlock(Old, SplitPt, DT, LI); if (RI) { Region *R = RI->getRegionFor(Old); RI->setRegionFor(NewBlock, R); } // After: // // \ / // // Old // // | // // NewBlock // // / \ // return NewBlock; } void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, Pass *P) { // Find first non-alloca instruction. Every basic block has a non-alloc // instruction, as every well formed basic block has a terminator. BasicBlock::iterator I = EntryBlock->begin(); while (isa(I)) ++I; auto *DTWP = P->getAnalysisIfAvailable(); auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; auto *LIWP = P->getAnalysisIfAvailable(); auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; RegionInfoPass *RIP = P->getAnalysisIfAvailable(); RegionInfo *RI = RIP ? &RIP->getRegionInfo() : nullptr; // splitBlock updates DT, LI and RI. splitBlock(EntryBlock, I, DT, LI, RI); }