//===- SparseUtils.cpp - Sparse Utils for MLIR execution ------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements a light-weight runtime support library that is useful // for sparse tensor manipulations. The functionality provided in this library // is meant to simplify benchmarking, testing, and debugging MLIR code that // operates on sparse tensors. The provided functionality is **not** part // of core MLIR, however. // //===----------------------------------------------------------------------===// #include "mlir/ExecutionEngine/CRunnerUtils.h" #ifdef MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS #include #include #include #include #include #include #include #include #include //===----------------------------------------------------------------------===// // // Internal support for storing and reading sparse tensors. // // The following memory-resident sparse storage schemes are supported: // // (a) A coordinate scheme for temporarily storing and lexicographically // sorting a sparse tensor by index (SparseTensorCOO). // // (b) A "one-size-fits-all" sparse tensor storage scheme defined by // per-dimension sparse/dense annnotations together with a dimension // ordering used by MLIR compiler-generated code (SparseTensorStorage). // // The following external formats are supported: // // (1) Matrix Market Exchange (MME): *.mtx // https://math.nist.gov/MatrixMarket/formats.html // // (2) Formidable Repository of Open Sparse Tensors and Tools (FROSTT): *.tns // http://frostt.io/tensors/file-formats.html // // Two public APIs are supported: // // (I) Methods operating on MLIR buffers (memrefs) to interact with sparse // tensors. These methods should be used exclusively by MLIR // compiler-generated code. // // (II) Methods that accept C-style data structures to interact with sparse // tensors. These methods can be used by any external runtime that wants // to interact with MLIR compiler-generated code. // // In both cases (I) and (II), the SparseTensorStorage format is externally // only visible as an opaque pointer. // //===----------------------------------------------------------------------===// namespace { /// A sparse tensor element in coordinate scheme (value and indices). /// For example, a rank-1 vector element would look like /// ({i}, a[i]) /// and a rank-5 tensor element like /// ({i,j,k,l,m}, a[i,j,k,l,m]) template struct Element { Element(const std::vector &ind, V val) : indices(ind), value(val){}; std::vector indices; V value; }; /// A memory-resident sparse tensor in coordinate scheme (collection of /// elements). This data structure is used to read a sparse tensor from /// any external format into memory and sort the elements lexicographically /// by indices before passing it back to the client (most packed storage /// formats require the elements to appear in lexicographic index order). template struct SparseTensorCOO { public: SparseTensorCOO(const std::vector &szs, uint64_t capacity) : sizes(szs) { if (capacity) elements.reserve(capacity); } /// Adds element as indices and value. void add(const std::vector &ind, V val) { uint64_t rank = getRank(); assert(rank == ind.size()); for (uint64_t r = 0; r < rank; r++) assert(ind[r] < sizes[r]); // within bounds elements.emplace_back(ind, val); } /// Sorts elements lexicographically by index. void sort() { std::sort(elements.begin(), elements.end(), lexOrder); } /// Returns rank. uint64_t getRank() const { return sizes.size(); } /// Getter for sizes array. const std::vector &getSizes() const { return sizes; } /// Getter for elements array. const std::vector> &getElements() const { return elements; } /// Factory method. Permutes the original dimensions according to /// the given ordering and expects subsequent add() calls to honor /// that same ordering for the given indices. The result is a /// fully permuted coordinate scheme. static SparseTensorCOO *newSparseTensorCOO(uint64_t rank, const uint64_t *sizes, const uint64_t *perm, uint64_t capacity = 0) { std::vector permsz(rank); for (uint64_t r = 0; r < rank; r++) permsz[perm[r]] = sizes[r]; return new SparseTensorCOO(permsz, capacity); } private: /// Returns true if indices of e1 < indices of e2. static bool lexOrder(const Element &e1, const Element &e2) { uint64_t rank = e1.indices.size(); assert(rank == e2.indices.size()); for (uint64_t r = 0; r < rank; r++) { if (e1.indices[r] == e2.indices[r]) continue; return e1.indices[r] < e2.indices[r]; } return false; } std::vector sizes; // per-dimension sizes std::vector> elements; }; /// Abstract base class of sparse tensor storage. Note that we use /// function overloading to implement "partial" method specialization. class SparseTensorStorageBase { public: enum DimLevelType : uint8_t { kDense = 0, kCompressed = 1, kSingleton = 2 }; virtual uint64_t getDimSize(uint64_t) = 0; // Overhead storage. virtual void getPointers(std::vector **, uint64_t) { fatal("p64"); } virtual void getPointers(std::vector **, uint64_t) { fatal("p32"); } virtual void getPointers(std::vector **, uint64_t) { fatal("p16"); } virtual void getPointers(std::vector **, uint64_t) { fatal("p8"); } virtual void getIndices(std::vector **, uint64_t) { fatal("i64"); } virtual void getIndices(std::vector **, uint64_t) { fatal("i32"); } virtual void getIndices(std::vector **, uint64_t) { fatal("i16"); } virtual void getIndices(std::vector **, uint64_t) { fatal("i8"); } // Primary storage. virtual void getValues(std::vector **) { fatal("valf64"); } virtual void getValues(std::vector **) { fatal("valf32"); } virtual void getValues(std::vector **) { fatal("vali64"); } virtual void getValues(std::vector **) { fatal("vali32"); } virtual void getValues(std::vector **) { fatal("vali16"); } virtual void getValues(std::vector **) { fatal("vali8"); } virtual ~SparseTensorStorageBase() {} private: void fatal(const char *tp) { fprintf(stderr, "unsupported %s\n", tp); exit(1); } }; /// A memory-resident sparse tensor using a storage scheme based on /// per-dimension sparse/dense annotations. This data structure provides a /// bufferized form of a sparse tensor type. In contrast to generating setup /// methods for each differently annotated sparse tensor, this method provides /// a convenient "one-size-fits-all" solution that simply takes an input tensor /// and annotations to implement all required setup in a general manner. template class SparseTensorStorage : public SparseTensorStorageBase { public: /// Constructs a sparse tensor storage scheme with the given dimensions, /// permutation, and per-dimension dense/sparse annotations, using /// the coordinate scheme tensor for the initial contents if provided. SparseTensorStorage(const std::vector &szs, const uint64_t *perm, const uint8_t *sparsity, SparseTensorCOO *tensor) : sizes(szs), rev(getRank()), pointers(getRank()), indices(getRank()) { uint64_t rank = getRank(); // Store "reverse" permutation. for (uint64_t r = 0; r < rank; r++) rev[perm[r]] = r; // Provide hints on capacity of pointers and indices. // TODO: needs fine-tuning based on sparsity for (uint64_t r = 0, s = 1; r < rank; r++) { s *= sizes[r]; if (sparsity[r] == kCompressed) { pointers[r].reserve(s + 1); indices[r].reserve(s); s = 1; } else { assert(sparsity[r] == kDense && "singleton not yet supported"); } } // Prepare sparse pointer structures for all dimensions. for (uint64_t r = 0; r < rank; r++) if (sparsity[r] == kCompressed) pointers[r].push_back(0); // Then assign contents from coordinate scheme tensor if provided. if (tensor) { uint64_t nnz = tensor->getElements().size(); values.reserve(nnz); fromCOO(tensor, sparsity, 0, nnz, 0); } } virtual ~SparseTensorStorage() {} /// Get the rank of the tensor. uint64_t getRank() const { return sizes.size(); } /// Get the size in the given dimension of the tensor. uint64_t getDimSize(uint64_t d) override { assert(d < getRank()); return sizes[d]; } // Partially specialize these three methods based on template types. void getPointers(std::vector

**out, uint64_t d) override { assert(d < getRank()); *out = &pointers[d]; } void getIndices(std::vector **out, uint64_t d) override { assert(d < getRank()); *out = &indices[d]; } void getValues(std::vector **out) override { *out = &values; } /// Returns this sparse tensor storage scheme as a new memory-resident /// sparse tensor in coordinate scheme with the given dimension order. SparseTensorCOO *toCOO(const uint64_t *perm) { // Restore original order of the dimension sizes and allocate coordinate // scheme with desired new ordering specified in perm. uint64_t rank = getRank(); std::vector orgsz(rank); for (uint64_t r = 0; r < rank; r++) orgsz[rev[r]] = sizes[r]; SparseTensorCOO *tensor = SparseTensorCOO::newSparseTensorCOO( rank, orgsz.data(), perm, values.size()); // Populate coordinate scheme restored from old ordering and changed with // new ordering. Rather than applying both reorderings during the recursion, // we compute the combine permutation in advance. std::vector reord(rank); for (uint64_t r = 0; r < rank; r++) reord[r] = perm[rev[r]]; std::vector idx(rank); toCOO(tensor, reord, idx, 0, 0); assert(tensor->getElements().size() == values.size()); return tensor; } /// Factory method. Constructs a sparse tensor storage scheme with the given /// dimensions, permutation, and per-dimension dense/sparse annotations, /// using the coordinate scheme tensor for the initial contents if provided. /// In the latter case, the coordinate scheme must respect the same /// permutation as is desired for the new sparse tensor storage. static SparseTensorStorage * newSparseTensor(uint64_t rank, const uint64_t *sizes, const uint64_t *perm, const uint8_t *sparsity, SparseTensorCOO *tensor) { SparseTensorStorage *n = nullptr; if (tensor) { assert(tensor->getRank() == rank); for (uint64_t r = 0; r < rank; r++) assert(sizes[r] == 0 || tensor->getSizes()[perm[r]] == sizes[r]); tensor->sort(); // sort lexicographically n = new SparseTensorStorage(tensor->getSizes(), perm, sparsity, tensor); delete tensor; } else { std::vector permsz(rank); for (uint64_t r = 0; r < rank; r++) permsz[perm[r]] = sizes[r]; n = new SparseTensorStorage(permsz, perm, sparsity, tensor); } return n; } private: /// Initializes sparse tensor storage scheme from a memory-resident sparse /// tensor in coordinate scheme. This method prepares the pointers and /// indices arrays under the given per-dimension dense/sparse annotations. void fromCOO(SparseTensorCOO *tensor, const uint8_t *sparsity, uint64_t lo, uint64_t hi, uint64_t d) { const std::vector> &elements = tensor->getElements(); // Once dimensions are exhausted, insert the numerical values. if (d == getRank()) { assert(lo >= hi || lo < elements.size()); values.push_back(lo < hi ? elements[lo].value : 0); return; } assert(d < getRank()); // Visit all elements in this interval. uint64_t full = 0; while (lo < hi) { assert(lo < elements.size() && hi <= elements.size()); // Find segment in interval with same index elements in this dimension. uint64_t idx = elements[lo].indices[d]; uint64_t seg = lo + 1; while (seg < hi && elements[seg].indices[d] == idx) seg++; // Handle segment in interval for sparse or dense dimension. if (sparsity[d] == kCompressed) { indices[d].push_back(idx); } else { // For dense storage we must fill in all the zero values between // the previous element (when last we ran this for-loop) and the // current element. for (; full < idx; full++) fromCOO(tensor, sparsity, 0, 0, d + 1); // pass empty full++; } fromCOO(tensor, sparsity, lo, seg, d + 1); // And move on to next segment in interval. lo = seg; } // Finalize the sparse pointer structure at this dimension. if (sparsity[d] == kCompressed) { pointers[d].push_back(indices[d].size()); } else { // For dense storage we must fill in all the zero values after // the last element. for (uint64_t sz = sizes[d]; full < sz; full++) fromCOO(tensor, sparsity, 0, 0, d + 1); // pass empty } } /// Stores the sparse tensor storage scheme into a memory-resident sparse /// tensor in coordinate scheme. void toCOO(SparseTensorCOO *tensor, std::vector &reord, std::vector &idx, uint64_t pos, uint64_t d) { assert(d <= getRank()); if (d == getRank()) { assert(pos < values.size()); tensor->add(idx, values[pos]); } else if (pointers[d].empty()) { // Dense dimension. for (uint64_t i = 0, sz = sizes[d], off = pos * sz; i < sz; i++) { idx[reord[d]] = i; toCOO(tensor, reord, idx, off + i, d + 1); } } else { // Sparse dimension. for (uint64_t ii = pointers[d][pos]; ii < pointers[d][pos + 1]; ii++) { idx[reord[d]] = indices[d][ii]; toCOO(tensor, reord, idx, ii, d + 1); } } } private: std::vector sizes; // per-dimension sizes std::vector rev; // "reverse" permutation std::vector> pointers; std::vector> indices; std::vector values; }; /// Helper to convert string to lower case. static char *toLower(char *token) { for (char *c = token; *c; c++) *c = tolower(*c); return token; } /// Read the MME header of a general sparse matrix of type real. static void readMMEHeader(FILE *file, char *name, uint64_t *idata) { char line[1025]; char header[64]; char object[64]; char format[64]; char field[64]; char symmetry[64]; // Read header line. if (fscanf(file, "%63s %63s %63s %63s %63s\n", header, object, format, field, symmetry) != 5) { fprintf(stderr, "Corrupt header in %s\n", name); exit(1); } // Make sure this is a general sparse matrix. if (strcmp(toLower(header), "%%matrixmarket") || strcmp(toLower(object), "matrix") || strcmp(toLower(format), "coordinate") || strcmp(toLower(field), "real") || strcmp(toLower(symmetry), "general")) { fprintf(stderr, "Cannot find a general sparse matrix with type real in %s\n", name); exit(1); } // Skip comments. while (1) { if (!fgets(line, 1025, file)) { fprintf(stderr, "Cannot find data in %s\n", name); exit(1); } if (line[0] != '%') break; } // Next line contains M N NNZ. idata[0] = 2; // rank if (sscanf(line, "%" PRIu64 "%" PRIu64 "%" PRIu64 "\n", idata + 2, idata + 3, idata + 1) != 3) { fprintf(stderr, "Cannot find size in %s\n", name); exit(1); } } /// Read the "extended" FROSTT header. Although not part of the documented /// format, we assume that the file starts with optional comments followed /// by two lines that define the rank, the number of nonzeros, and the /// dimensions sizes (one per rank) of the sparse tensor. static void readExtFROSTTHeader(FILE *file, char *name, uint64_t *idata) { char line[1025]; // Skip comments. while (1) { if (!fgets(line, 1025, file)) { fprintf(stderr, "Cannot find data in %s\n", name); exit(1); } if (line[0] != '#') break; } // Next line contains RANK and NNZ. if (sscanf(line, "%" PRIu64 "%" PRIu64 "\n", idata, idata + 1) != 2) { fprintf(stderr, "Cannot find metadata in %s\n", name); exit(1); } // Followed by a line with the dimension sizes (one per rank). for (uint64_t r = 0; r < idata[0]; r++) { if (fscanf(file, "%" PRIu64, idata + 2 + r) != 1) { fprintf(stderr, "Cannot find dimension size %s\n", name); exit(1); } } } /// Reads a sparse tensor with the given filename into a memory-resident /// sparse tensor in coordinate scheme. template static SparseTensorCOO *openSparseTensorCOO(char *filename, uint64_t rank, const uint64_t *sizes, const uint64_t *perm) { // Open the file. FILE *file = fopen(filename, "r"); if (!file) { fprintf(stderr, "Cannot find %s\n", filename); exit(1); } // Perform some file format dependent set up. uint64_t idata[512]; if (strstr(filename, ".mtx")) { readMMEHeader(file, filename, idata); } else if (strstr(filename, ".tns")) { readExtFROSTTHeader(file, filename, idata); } else { fprintf(stderr, "Unknown format %s\n", filename); exit(1); } // Prepare sparse tensor object with per-dimension sizes // and the number of nonzeros as initial capacity. assert(rank == idata[0] && "rank mismatch"); uint64_t nnz = idata[1]; for (uint64_t r = 0; r < rank; r++) assert((sizes[r] == 0 || sizes[r] == idata[2 + r]) && "dimension size mismatch"); SparseTensorCOO *tensor = SparseTensorCOO::newSparseTensorCOO(rank, idata + 2, perm, nnz); // Read all nonzero elements. std::vector indices(rank); for (uint64_t k = 0; k < nnz; k++) { uint64_t idx = -1; for (uint64_t r = 0; r < rank; r++) { if (fscanf(file, "%" PRIu64, &idx) != 1) { fprintf(stderr, "Cannot find next index in %s\n", filename); exit(1); } // Add 0-based index. indices[perm[r]] = idx - 1; } // The external formats always store the numerical values with the type // double, but we cast these values to the sparse tensor object type. double value; if (fscanf(file, "%lg\n", &value) != 1) { fprintf(stderr, "Cannot find next value in %s\n", filename); exit(1); } tensor->add(indices, value); } // Close the file and return tensor. fclose(file); return tensor; } } // anonymous namespace extern "C" { /// This type is used in the public API at all places where MLIR expects /// values with the built-in type "index". For now, we simply assume that /// type is 64-bit, but targets with different "index" bit widths should link /// with an alternatively built runtime support library. // TODO: support such targets? typedef uint64_t index_t; //===----------------------------------------------------------------------===// // // Public API with methods that operate on MLIR buffers (memrefs) to interact // with sparse tensors, which are only visible as opaque pointers externally. // These methods should be used exclusively by MLIR compiler-generated code. // // Some macro magic is used to generate implementations for all required type // combinations that can be called from MLIR compiler-generated code. // //===----------------------------------------------------------------------===// enum OverheadTypeEnum : uint32_t { kU64 = 1, kU32 = 2, kU16 = 3, kU8 = 4 }; enum PrimaryTypeEnum : uint32_t { kF64 = 1, kF32 = 2, kI64 = 3, kI32 = 4, kI16 = 5, kI8 = 6 }; enum Action : uint32_t { kEmpty = 0, kFromFile = 1, kFromCOO = 2, kEmptyCOO = 3, kToCOO = 4 }; #define CASE(p, i, v, P, I, V) \ if (ptrTp == (p) && indTp == (i) && valTp == (v)) { \ SparseTensorCOO *tensor = nullptr; \ if (action == kFromFile) \ tensor = \ openSparseTensorCOO(static_cast(ptr), rank, sizes, perm); \ else if (action == kFromCOO) \ tensor = static_cast *>(ptr); \ else if (action == kEmptyCOO) \ return SparseTensorCOO::newSparseTensorCOO(rank, sizes, perm); \ else if (action == kToCOO) \ return static_cast *>(ptr)->toCOO(perm); \ else \ assert(action == kEmpty); \ return SparseTensorStorage::newSparseTensor(rank, sizes, perm, \ sparsity, tensor); \ } #define IMPL1(NAME, TYPE, LIB) \ void _mlir_ciface_##NAME(StridedMemRefType *ref, void *tensor) { \ assert(ref); \ assert(tensor); \ std::vector *v; \ static_cast(tensor)->LIB(&v); \ ref->basePtr = ref->data = v->data(); \ ref->offset = 0; \ ref->sizes[0] = v->size(); \ ref->strides[0] = 1; \ } #define IMPL2(NAME, TYPE, LIB) \ void _mlir_ciface_##NAME(StridedMemRefType *ref, void *tensor, \ index_t d) { \ assert(ref); \ assert(tensor); \ std::vector *v; \ static_cast(tensor)->LIB(&v, d); \ ref->basePtr = ref->data = v->data(); \ ref->offset = 0; \ ref->sizes[0] = v->size(); \ ref->strides[0] = 1; \ } #define IMPL3(NAME, TYPE) \ void *_mlir_ciface_##NAME(void *tensor, TYPE value, \ StridedMemRefType *iref, \ StridedMemRefType *pref) { \ assert(tensor); \ assert(iref); \ assert(pref); \ assert(iref->strides[0] == 1 && pref->strides[0] == 1); \ assert(iref->sizes[0] == pref->sizes[0]); \ const index_t *indx = iref->data + iref->offset; \ const index_t *perm = pref->data + pref->offset; \ uint64_t isize = iref->sizes[0]; \ std::vector indices(isize); \ for (uint64_t r = 0; r < isize; r++) \ indices[perm[r]] = indx[r]; \ static_cast *>(tensor)->add(indices, value); \ return tensor; \ } /// Constructs a new sparse tensor. This is the "swiss army knife" /// method for materializing sparse tensors into the computation. /// /// action: /// kEmpty = returns empty storage to fill later /// kFromFile = returns storage, where ptr contains filename to read /// kFromCOO = returns storage, where ptr contains coordinate scheme to assign /// kEmptyCOO = returns empty coordinate scheme to fill and use with kFromCOO /// kToCOO = returns coordinate scheme from storage in ptr to use with kFromCOO void * _mlir_ciface_newSparseTensor(StridedMemRefType *aref, // NOLINT StridedMemRefType *sref, StridedMemRefType *pref, uint32_t ptrTp, uint32_t indTp, uint32_t valTp, uint32_t action, void *ptr) { assert(aref && sref && pref); assert(aref->strides[0] == 1 && sref->strides[0] == 1 && pref->strides[0] == 1); assert(aref->sizes[0] == sref->sizes[0] && sref->sizes[0] == pref->sizes[0]); const uint8_t *sparsity = aref->data + aref->offset; const index_t *sizes = sref->data + sref->offset; const index_t *perm = pref->data + pref->offset; uint64_t rank = aref->sizes[0]; // Double matrices with all combinations of overhead storage. CASE(kU64, kU64, kF64, uint64_t, uint64_t, double); CASE(kU64, kU32, kF64, uint64_t, uint32_t, double); CASE(kU64, kU16, kF64, uint64_t, uint16_t, double); CASE(kU64, kU8, kF64, uint64_t, uint8_t, double); CASE(kU32, kU64, kF64, uint32_t, uint64_t, double); CASE(kU32, kU32, kF64, uint32_t, uint32_t, double); CASE(kU32, kU16, kF64, uint32_t, uint16_t, double); CASE(kU32, kU8, kF64, uint32_t, uint8_t, double); CASE(kU16, kU64, kF64, uint16_t, uint64_t, double); CASE(kU16, kU32, kF64, uint16_t, uint32_t, double); CASE(kU16, kU16, kF64, uint16_t, uint16_t, double); CASE(kU16, kU8, kF64, uint16_t, uint8_t, double); CASE(kU8, kU64, kF64, uint8_t, uint64_t, double); CASE(kU8, kU32, kF64, uint8_t, uint32_t, double); CASE(kU8, kU16, kF64, uint8_t, uint16_t, double); CASE(kU8, kU8, kF64, uint8_t, uint8_t, double); // Float matrices with all combinations of overhead storage. CASE(kU64, kU64, kF32, uint64_t, uint64_t, float); CASE(kU64, kU32, kF32, uint64_t, uint32_t, float); CASE(kU64, kU16, kF32, uint64_t, uint16_t, float); CASE(kU64, kU8, kF32, uint64_t, uint8_t, float); CASE(kU32, kU64, kF32, uint32_t, uint64_t, float); CASE(kU32, kU32, kF32, uint32_t, uint32_t, float); CASE(kU32, kU16, kF32, uint32_t, uint16_t, float); CASE(kU32, kU8, kF32, uint32_t, uint8_t, float); CASE(kU16, kU64, kF32, uint16_t, uint64_t, float); CASE(kU16, kU32, kF32, uint16_t, uint32_t, float); CASE(kU16, kU16, kF32, uint16_t, uint16_t, float); CASE(kU16, kU8, kF32, uint16_t, uint8_t, float); CASE(kU8, kU64, kF32, uint8_t, uint64_t, float); CASE(kU8, kU32, kF32, uint8_t, uint32_t, float); CASE(kU8, kU16, kF32, uint8_t, uint16_t, float); CASE(kU8, kU8, kF32, uint8_t, uint8_t, float); // Integral matrices with same overhead storage. CASE(kU64, kU64, kI64, uint64_t, uint64_t, int64_t); CASE(kU64, kU64, kI32, uint64_t, uint64_t, int32_t); CASE(kU64, kU64, kI16, uint64_t, uint64_t, int16_t); CASE(kU64, kU64, kI8, uint64_t, uint64_t, int8_t); CASE(kU32, kU32, kI32, uint32_t, uint32_t, int32_t); CASE(kU32, kU32, kI16, uint32_t, uint32_t, int16_t); CASE(kU32, kU32, kI8, uint32_t, uint32_t, int8_t); CASE(kU16, kU16, kI32, uint16_t, uint16_t, int32_t); CASE(kU16, kU16, kI16, uint16_t, uint16_t, int16_t); CASE(kU16, kU16, kI8, uint16_t, uint16_t, int8_t); CASE(kU8, kU8, kI32, uint8_t, uint8_t, int32_t); CASE(kU8, kU8, kI16, uint8_t, uint8_t, int16_t); CASE(kU8, kU8, kI8, uint8_t, uint8_t, int8_t); // Unsupported case (add above if needed). fputs("unsupported combination of types\n", stderr); exit(1); } /// Methods that provide direct access to pointers, indices, and values. IMPL2(sparsePointers, index_t, getPointers) IMPL2(sparsePointers64, uint64_t, getPointers) IMPL2(sparsePointers32, uint32_t, getPointers) IMPL2(sparsePointers16, uint16_t, getPointers) IMPL2(sparsePointers8, uint8_t, getPointers) IMPL2(sparseIndices, index_t, getIndices) IMPL2(sparseIndices64, uint64_t, getIndices) IMPL2(sparseIndices32, uint32_t, getIndices) IMPL2(sparseIndices16, uint16_t, getIndices) IMPL2(sparseIndices8, uint8_t, getIndices) IMPL1(sparseValuesF64, double, getValues) IMPL1(sparseValuesF32, float, getValues) IMPL1(sparseValuesI64, int64_t, getValues) IMPL1(sparseValuesI32, int32_t, getValues) IMPL1(sparseValuesI16, int16_t, getValues) IMPL1(sparseValuesI8, int8_t, getValues) /// Helper to add value to coordinate scheme, one per value type. IMPL3(addEltF64, double) IMPL3(addEltF32, float) IMPL3(addEltI64, int64_t) IMPL3(addEltI32, int32_t) IMPL3(addEltI16, int16_t) IMPL3(addEltI8, int8_t) #undef CASE #undef IMPL1 #undef IMPL2 #undef IMPL3 //===----------------------------------------------------------------------===// // // Public API with methods that accept C-style data structures to interact // with sparse tensors, which are only visible as opaque pointers externally. // These methods can be used both by MLIR compiler-generated code as well as by // an external runtime that wants to interact with MLIR compiler-generated code. // //===----------------------------------------------------------------------===// /// Helper method to read a sparse tensor filename from the environment, /// defined with the naming convention ${TENSOR0}, ${TENSOR1}, etc. char *getTensorFilename(index_t id) { char var[80]; sprintf(var, "TENSOR%" PRIu64, id); char *env = getenv(var); return env; } /// Returns size of sparse tensor in given dimension. index_t sparseDimSize(void *tensor, index_t d) { return static_cast(tensor)->getDimSize(d); } /// Releases sparse tensor storage. void delSparseTensor(void *tensor) { delete static_cast(tensor); } /// Initializes sparse tensor from a COO-flavored format expressed using C-style /// data structures. The expected parameters are: /// /// rank: rank of tensor /// nse: number of specified elements (usually the nonzeros) /// shape: array with dimension size for each rank /// values: a "nse" array with values for all specified elements /// indices: a flat "nse x rank" array with indices for all specified elements /// /// For example, the sparse matrix /// | 1.0 0.0 0.0 | /// | 0.0 5.0 3.0 | /// can be passed as /// rank = 2 /// nse = 3 /// shape = [2, 3] /// values = [1.0, 5.0, 3.0] /// indices = [ 0, 0, 1, 1, 1, 2] // // TODO: for now f64 tensors only, no dim ordering, all dimensions compressed // void *convertToMLIRSparseTensor(uint64_t rank, uint64_t nse, uint64_t *shape, double *values, uint64_t *indices) { // Setup all-dims compressed and default ordering. std::vector sparse(rank, SparseTensorStorageBase::kCompressed); std::vector perm(rank); std::iota(perm.begin(), perm.end(), 0); // Convert external format to internal COO. SparseTensorCOO *tensor = SparseTensorCOO::newSparseTensorCOO( rank, shape, perm.data(), nse); std::vector idx(rank); for (uint64_t i = 0, base = 0; i < nse; i++) { for (uint64_t r = 0; r < rank; r++) idx[r] = indices[base + r]; tensor->add(idx, values[i]); base += rank; } // Return sparse tensor storage format as opaque pointer. return SparseTensorStorage::newSparseTensor( rank, shape, perm.data(), sparse.data(), tensor); } } // extern "C" #endif // MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS