# RUN: %PYTHON %s from mlir.dialects import arith, func, linalg from mlir.dialects.linalg.opdsl.lang import * from mlir.ir import * def run(f): print("\nTEST:", f.__name__) f() return f @run def test_infer_contraction_dimensions_from_ops(): with Context(), Location.unknown(): module = Module.create() f32 = F32Type.get() with InsertionPoint(module.body): # === Static shapes === m, n, k = 4, 4, 4 a_type = RankedTensorType.get((m, k), f32) b_type = RankedTensorType.get((k, n), f32) c_type = RankedTensorType.get((m, n), f32) @func.FuncOp.from_py_func(a_type, b_type, c_type) def contraction_fn(a, b, c): zero = arith.ConstantOp(value=FloatAttr.get(f32, 0.0), result=f32) filled = linalg.fill(zero, outs=[c]) fill_op = filled.owner assert not linalg.isa_contraction_op(zero.operation) assert not linalg.isa_contraction_op(fill_op) assert linalg.infer_contraction_dimensions(fill_op) is None dim_m = AffineDimExpr.get(0) dim_n = AffineDimExpr.get(1) dim_k = AffineDimExpr.get(2) a_map = AffineMap.get(3, 0, [dim_m, dim_k]) b_map = AffineMap.get(3, 0, [dim_k, dim_n]) c_map = AffineMap.get(3, 0, [dim_m, dim_n]) result = linalg.contract( a, b, outs=(filled,), indexing_maps=[a_map, b_map, c_map], ) contraction_op = result.owner assert linalg.isa_contraction_op(contraction_op) dims = linalg.infer_contraction_dimensions(contraction_op) assert dims is not None # Expect m=[0], n=[1], k=[2] as per standard matmul. assert list(dims.m) == [0], f"Expected m=[0], got {list(dims.m)}" assert list(dims.n) == [1], f"Expected n=[1], got {list(dims.n)}" assert list(dims.k) == [2], f"Expected k=[2], got {list(dims.k)}" assert ( list(dims.batch) == [] ), f"Expected batch=[], got {list(dims.batch)}" # === Dynamic shape case === dyn = ShapedType.get_dynamic_size() a_dyn_type = RankedTensorType.get((4, dyn), f32) b_dyn_type = RankedTensorType.get((dyn, 4), f32) c_type = RankedTensorType.get((4, 4), f32) @func.FuncOp.from_py_func(a_dyn_type, b_dyn_type, c_type) def dynamic_contraction_fn(a, b, c): zero = arith.ConstantOp(value=FloatAttr.get(f32, 0.0), result=f32) filled = linalg.fill(zero, outs=[c]) dim_m = AffineDimExpr.get(0) dim_n = AffineDimExpr.get(1) dim_k = AffineDimExpr.get(2) a_map = AffineMap.get(3, 0, [dim_m, dim_k]) b_map = AffineMap.get(3, 0, [dim_k, dim_n]) c_map = AffineMap.get(3, 0, [dim_m, dim_n]) result = linalg.contract( a, b, outs=(filled,), indexing_maps=[a_map, b_map, c_map], ) contraction_op = result.owner assert linalg.isa_contraction_op(contraction_op) dims = linalg.infer_contraction_dimensions(contraction_op) assert dims is not None assert list(dims.m) == [0], f"Expected m=[0], got {list(dims.m)}" assert list(dims.n) == [1], f"Expected n=[1], got {list(dims.n)}" assert list(dims.k) == [2], f"Expected k=[2], got {list(dims.k)}" assert ( list(dims.batch) == [] ), f"Expected batch=[], got {list(dims.batch)}" @run def test_infer_convolution_dimensions_from_ops(): with Context(), Location.unknown(): module = Module.create() f32 = F32Type.get() with InsertionPoint(module.body): # === Static shapes === batch, h, w, c_in, kh, kw, c_out = 1, 8, 8, 4, 3, 3, 16 input_type = RankedTensorType.get((batch, h, w, c_in), f32) filter_type = RankedTensorType.get((kh, kw, c_in, c_out), f32) output_type = RankedTensorType.get( (batch, h - kh + 1, w - kw + 1, c_out), f32 ) @func.FuncOp.from_py_func(input_type, filter_type, output_type) def conv_fn(input, filter, output): zero = arith.ConstantOp(value=FloatAttr.get(f32, 0.0), result=f32) filled = linalg.fill(zero, outs=[output]) fill_op = filled.owner assert not linalg.isa_convolution_op(fill_op) assert linalg.infer_convolution_dimensions(fill_op) is None result = linalg.conv_2d_nhwc_hwcf(input, filter, outs=[filled]) conv_op = result.owner assert linalg.isa_convolution_op(conv_op) dims = linalg.infer_convolution_dimensions(conv_op) assert dims is not None assert list(dims.batch) == [0] assert list(dims.output_image) == [1, 2] assert list(dims.output_channel) == [3] assert list(dims.filter_loop) == [4, 5] assert list(dims.input_channel) == [6] assert list(dims.depth) == [] assert list(dims.strides) == [1, 1] assert list(dims.dilations) == [1, 1] # === Dynamic shapes === dyn = ShapedType.get_dynamic_size() dyn_input_type = RankedTensorType.get((batch, dyn, dyn, c_in), f32) dyn_output_type = RankedTensorType.get((batch, dyn, dyn, c_out), f32) @func.FuncOp.from_py_func(dyn_input_type, filter_type, dyn_output_type) def dyn_conv_fn(input, filter, output): zero = arith.ConstantOp(value=FloatAttr.get(f32, 0.0), result=f32) filled = linalg.fill(zero, outs=[output]) result = linalg.conv_2d_nhwc_hwcf(input, filter, outs=[filled]) conv_op = result.owner assert linalg.isa_convolution_op(conv_op) dims = linalg.infer_convolution_dimensions(conv_op) assert dims is not None assert list(dims.batch) == [0] assert list(dims.output_image) == [1, 2] assert list(dims.output_channel) == [3] assert list(dims.filter_loop) == [4, 5] assert list(dims.input_channel) == [6] assert list(dims.depth) == [] assert list(dims.strides) == [1, 1] assert list(dims.dilations) == [1, 1]