//===- OutputSections.cpp -------------------------------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "OutputSections.h" #include "Config.h" #include "EhFrame.h" #include "GdbIndex.h" #include "LinkerScript.h" #include "Memory.h" #include "Strings.h" #include "SymbolListFile.h" #include "SymbolTable.h" #include "SyntheticSections.h" #include "Target.h" #include "lld/Core/Parallel.h" #include "llvm/Support/Dwarf.h" #include "llvm/Support/MD5.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/SHA1.h" using namespace llvm; using namespace llvm::dwarf; using namespace llvm::object; using namespace llvm::support::endian; using namespace llvm::ELF; using namespace lld; using namespace lld::elf; OutputSectionBase::OutputSectionBase(StringRef Name, uint32_t Type, uint64_t Flags) : Name(Name) { this->Type = Type; this->Flags = Flags; this->Addralign = 1; } uint32_t OutputSectionBase::getPhdrFlags() const { uint32_t Ret = PF_R; if (Flags & SHF_WRITE) Ret |= PF_W; if (Flags & SHF_EXECINSTR) Ret |= PF_X; return Ret; } template void OutputSectionBase::writeHeaderTo(typename ELFT::Shdr *Shdr) { Shdr->sh_entsize = Entsize; Shdr->sh_addralign = Addralign; Shdr->sh_type = Type; Shdr->sh_offset = Offset; Shdr->sh_flags = Flags; Shdr->sh_info = Info; Shdr->sh_link = Link; Shdr->sh_addr = Addr; Shdr->sh_size = Size; Shdr->sh_name = ShName; } template GdbIndexSection::GdbIndexSection() : OutputSectionBase(".gdb_index", SHT_PROGBITS, 0) {} template void GdbIndexSection::parseDebugSections() { std::vector *> &IS = static_cast *>(Out::DebugInfo)->Sections; for (InputSection *I : IS) readDwarf(I); } template void GdbIndexSection::readDwarf(InputSection *I) { std::vector> CuList = readCuList(I); CompilationUnits.insert(CompilationUnits.end(), CuList.begin(), CuList.end()); } template void GdbIndexSection::finalize() { parseDebugSections(); // GdbIndex header consist from version fields // and 5 more fields with different kinds of offsets. CuTypesOffset = CuListOffset + CompilationUnits.size() * CompilationUnitSize; this->Size = CuTypesOffset; } template void GdbIndexSection::writeTo(uint8_t *Buf) { write32le(Buf, 7); // Write Version write32le(Buf + 4, CuListOffset); // CU list offset write32le(Buf + 8, CuTypesOffset); // Types CU list offset write32le(Buf + 12, CuTypesOffset); // Address area offset write32le(Buf + 16, CuTypesOffset); // Symbol table offset write32le(Buf + 20, CuTypesOffset); // Constant pool offset Buf += 24; // Write the CU list. for (std::pair CU : CompilationUnits) { write64le(Buf, CU.first); write64le(Buf + 8, CU.second); Buf += 16; } } template PltSection::PltSection() : OutputSectionBase(".plt", SHT_PROGBITS, SHF_ALLOC | SHF_EXECINSTR) { this->Addralign = 16; } template void PltSection::writeTo(uint8_t *Buf) { // At beginning of PLT, we have code to call the dynamic linker // to resolve dynsyms at runtime. Write such code. Target->writePltHeader(Buf); size_t Off = Target->PltHeaderSize; for (auto &I : Entries) { const SymbolBody *B = I.first; unsigned RelOff = I.second; uint64_t Got = B->getGotPltVA(); uint64_t Plt = this->Addr + Off; Target->writePlt(Buf + Off, Got, Plt, B->PltIndex, RelOff); Off += Target->PltEntrySize; } } template void PltSection::addEntry(SymbolBody &Sym) { Sym.PltIndex = Entries.size(); unsigned RelOff = Out::RelaPlt->getRelocOffset(); Entries.push_back(std::make_pair(&Sym, RelOff)); } template void PltSection::finalize() { this->Size = Target->PltHeaderSize + Entries.size() * Target->PltEntrySize; } template RelocationSection::RelocationSection(StringRef Name, bool Sort) : OutputSectionBase(Name, Config->Rela ? SHT_RELA : SHT_REL, SHF_ALLOC), Sort(Sort) { this->Entsize = Config->Rela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); this->Addralign = sizeof(uintX_t); } template void RelocationSection::addReloc(const DynamicReloc &Reloc) { if (Reloc.Type == Target->RelativeRel) ++NumRelativeRelocs; Relocs.push_back(Reloc); } template static bool compRelocations(const RelTy &A, const RelTy &B) { bool AIsRel = A.getType(Config->Mips64EL) == Target->RelativeRel; bool BIsRel = B.getType(Config->Mips64EL) == Target->RelativeRel; if (AIsRel != BIsRel) return AIsRel; return A.getSymbol(Config->Mips64EL) < B.getSymbol(Config->Mips64EL); } template void RelocationSection::writeTo(uint8_t *Buf) { uint8_t *BufBegin = Buf; for (const DynamicReloc &Rel : Relocs) { auto *P = reinterpret_cast(Buf); Buf += Config->Rela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); if (Config->Rela) P->r_addend = Rel.getAddend(); P->r_offset = Rel.getOffset(); if (Config->EMachine == EM_MIPS && Rel.getInputSec() == In::Got) // Dynamic relocation against MIPS GOT section make deal TLS entries // allocated in the end of the GOT. We need to adjust the offset to take // in account 'local' and 'global' GOT entries. P->r_offset += In::Got->getMipsTlsOffset(); P->setSymbolAndType(Rel.getSymIndex(), Rel.Type, Config->Mips64EL); } if (Sort) { if (Config->Rela) std::stable_sort((Elf_Rela *)BufBegin, (Elf_Rela *)BufBegin + Relocs.size(), compRelocations); else std::stable_sort((Elf_Rel *)BufBegin, (Elf_Rel *)BufBegin + Relocs.size(), compRelocations); } } template unsigned RelocationSection::getRelocOffset() { return this->Entsize * Relocs.size(); } template void RelocationSection::finalize() { this->Link = Out::DynSymTab ? Out::DynSymTab->SectionIndex : Out::SymTab->SectionIndex; this->Size = Relocs.size() * this->Entsize; } template HashTableSection::HashTableSection() : OutputSectionBase(".hash", SHT_HASH, SHF_ALLOC) { this->Entsize = sizeof(Elf_Word); this->Addralign = sizeof(Elf_Word); } template void HashTableSection::finalize() { this->Link = Out::DynSymTab->SectionIndex; unsigned NumEntries = 2; // nbucket and nchain. NumEntries += Out::DynSymTab->getNumSymbols(); // The chain entries. // Create as many buckets as there are symbols. // FIXME: This is simplistic. We can try to optimize it, but implementing // support for SHT_GNU_HASH is probably even more profitable. NumEntries += Out::DynSymTab->getNumSymbols(); this->Size = NumEntries * sizeof(Elf_Word); } template void HashTableSection::writeTo(uint8_t *Buf) { unsigned NumSymbols = Out::DynSymTab->getNumSymbols(); auto *P = reinterpret_cast(Buf); *P++ = NumSymbols; // nbucket *P++ = NumSymbols; // nchain Elf_Word *Buckets = P; Elf_Word *Chains = P + NumSymbols; for (const SymbolTableEntry &S : Out::DynSymTab->getSymbols()) { SymbolBody *Body = S.Symbol; StringRef Name = Body->getName(); unsigned I = Body->DynsymIndex; uint32_t Hash = hashSysV(Name) % NumSymbols; Chains[I] = Buckets[Hash]; Buckets[Hash] = I; } } static uint32_t hashGnu(StringRef Name) { uint32_t H = 5381; for (uint8_t C : Name) H = (H << 5) + H + C; return H; } template GnuHashTableSection::GnuHashTableSection() : OutputSectionBase(".gnu.hash", SHT_GNU_HASH, SHF_ALLOC) { this->Entsize = ELFT::Is64Bits ? 0 : 4; this->Addralign = sizeof(uintX_t); } template unsigned GnuHashTableSection::calcNBuckets(unsigned NumHashed) { if (!NumHashed) return 0; // These values are prime numbers which are not greater than 2^(N-1) + 1. // In result, for any particular NumHashed we return a prime number // which is not greater than NumHashed. static const unsigned Primes[] = { 1, 1, 3, 3, 7, 13, 31, 61, 127, 251, 509, 1021, 2039, 4093, 8191, 16381, 32749, 65521, 131071}; return Primes[std::min(Log2_32_Ceil(NumHashed), array_lengthof(Primes) - 1)]; } // Bloom filter estimation: at least 8 bits for each hashed symbol. // GNU Hash table requirement: it should be a power of 2, // the minimum value is 1, even for an empty table. // Expected results for a 32-bit target: // calcMaskWords(0..4) = 1 // calcMaskWords(5..8) = 2 // calcMaskWords(9..16) = 4 // For a 64-bit target: // calcMaskWords(0..8) = 1 // calcMaskWords(9..16) = 2 // calcMaskWords(17..32) = 4 template unsigned GnuHashTableSection::calcMaskWords(unsigned NumHashed) { if (!NumHashed) return 1; return NextPowerOf2((NumHashed - 1) / sizeof(Elf_Off)); } template void GnuHashTableSection::finalize() { unsigned NumHashed = Symbols.size(); NBuckets = calcNBuckets(NumHashed); MaskWords = calcMaskWords(NumHashed); // Second hash shift estimation: just predefined values. Shift2 = ELFT::Is64Bits ? 6 : 5; this->Link = Out::DynSymTab->SectionIndex; this->Size = sizeof(Elf_Word) * 4 // Header + sizeof(Elf_Off) * MaskWords // Bloom Filter + sizeof(Elf_Word) * NBuckets // Hash Buckets + sizeof(Elf_Word) * NumHashed; // Hash Values } template void GnuHashTableSection::writeTo(uint8_t *Buf) { writeHeader(Buf); if (Symbols.empty()) return; writeBloomFilter(Buf); writeHashTable(Buf); } template void GnuHashTableSection::writeHeader(uint8_t *&Buf) { auto *P = reinterpret_cast(Buf); *P++ = NBuckets; *P++ = Out::DynSymTab->getNumSymbols() - Symbols.size(); *P++ = MaskWords; *P++ = Shift2; Buf = reinterpret_cast(P); } template void GnuHashTableSection::writeBloomFilter(uint8_t *&Buf) { unsigned C = sizeof(Elf_Off) * 8; auto *Masks = reinterpret_cast(Buf); for (const SymbolData &Sym : Symbols) { size_t Pos = (Sym.Hash / C) & (MaskWords - 1); uintX_t V = (uintX_t(1) << (Sym.Hash % C)) | (uintX_t(1) << ((Sym.Hash >> Shift2) % C)); Masks[Pos] |= V; } Buf += sizeof(Elf_Off) * MaskWords; } template void GnuHashTableSection::writeHashTable(uint8_t *Buf) { Elf_Word *Buckets = reinterpret_cast(Buf); Elf_Word *Values = Buckets + NBuckets; int PrevBucket = -1; int I = 0; for (const SymbolData &Sym : Symbols) { int Bucket = Sym.Hash % NBuckets; assert(PrevBucket <= Bucket); if (Bucket != PrevBucket) { Buckets[Bucket] = Sym.Body->DynsymIndex; PrevBucket = Bucket; if (I > 0) Values[I - 1] |= 1; } Values[I] = Sym.Hash & ~1; ++I; } if (I > 0) Values[I - 1] |= 1; } // Add symbols to this symbol hash table. Note that this function // destructively sort a given vector -- which is needed because // GNU-style hash table places some sorting requirements. template void GnuHashTableSection::addSymbols(std::vector &V) { // Ideally this will just be 'auto' but GCC 6.1 is not able // to deduce it correctly. std::vector::iterator Mid = std::stable_partition(V.begin(), V.end(), [](const SymbolTableEntry &S) { return S.Symbol->isUndefined(); }); if (Mid == V.end()) return; for (auto I = Mid, E = V.end(); I != E; ++I) { SymbolBody *B = I->Symbol; size_t StrOff = I->StrTabOffset; Symbols.push_back({B, StrOff, hashGnu(B->getName())}); } unsigned NBuckets = calcNBuckets(Symbols.size()); std::stable_sort(Symbols.begin(), Symbols.end(), [&](const SymbolData &L, const SymbolData &R) { return L.Hash % NBuckets < R.Hash % NBuckets; }); V.erase(Mid, V.end()); for (const SymbolData &Sym : Symbols) V.push_back({Sym.Body, Sym.STName}); } // Returns the number of version definition entries. Because the first entry // is for the version definition itself, it is the number of versioned symbols // plus one. Note that we don't support multiple versions yet. static unsigned getVerDefNum() { return Config->VersionDefinitions.size() + 1; } template DynamicSection::DynamicSection() : OutputSectionBase(".dynamic", SHT_DYNAMIC, SHF_ALLOC | SHF_WRITE) { this->Addralign = sizeof(uintX_t); this->Entsize = ELFT::Is64Bits ? 16 : 8; // .dynamic section is not writable on MIPS. // See "Special Section" in Chapter 4 in the following document: // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf if (Config->EMachine == EM_MIPS) this->Flags = SHF_ALLOC; addEntries(); } // There are some dynamic entries that don't depend on other sections. // Such entries can be set early. template void DynamicSection::addEntries() { // Add strings to .dynstr early so that .dynstr's size will be // fixed early. for (StringRef S : Config->AuxiliaryList) Add({DT_AUXILIARY, Out::DynStrTab->addString(S)}); if (!Config->RPath.empty()) Add({Config->EnableNewDtags ? DT_RUNPATH : DT_RPATH, Out::DynStrTab->addString(Config->RPath)}); for (SharedFile *F : Symtab::X->getSharedFiles()) if (F->isNeeded()) Add({DT_NEEDED, Out::DynStrTab->addString(F->getSoName())}); if (!Config->SoName.empty()) Add({DT_SONAME, Out::DynStrTab->addString(Config->SoName)}); // Set DT_FLAGS and DT_FLAGS_1. uint32_t DtFlags = 0; uint32_t DtFlags1 = 0; if (Config->Bsymbolic) DtFlags |= DF_SYMBOLIC; if (Config->ZNodelete) DtFlags1 |= DF_1_NODELETE; if (Config->ZNow) { DtFlags |= DF_BIND_NOW; DtFlags1 |= DF_1_NOW; } if (Config->ZOrigin) { DtFlags |= DF_ORIGIN; DtFlags1 |= DF_1_ORIGIN; } if (DtFlags) Add({DT_FLAGS, DtFlags}); if (DtFlags1) Add({DT_FLAGS_1, DtFlags1}); if (!Config->Entry.empty()) Add({DT_DEBUG, (uint64_t)0}); } // Add remaining entries to complete .dynamic contents. template void DynamicSection::finalize() { if (this->Size) return; // Already finalized. this->Link = Out::DynStrTab->SectionIndex; if (Out::RelaDyn->hasRelocs()) { bool IsRela = Config->Rela; Add({IsRela ? DT_RELA : DT_REL, Out::RelaDyn}); Add({IsRela ? DT_RELASZ : DT_RELSZ, Out::RelaDyn->Size}); Add({IsRela ? DT_RELAENT : DT_RELENT, uintX_t(IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel))}); // MIPS dynamic loader does not support RELCOUNT tag. // The problem is in the tight relation between dynamic // relocations and GOT. So do not emit this tag on MIPS. if (Config->EMachine != EM_MIPS) { size_t NumRelativeRels = Out::RelaDyn->getRelativeRelocCount(); if (Config->ZCombreloc && NumRelativeRels) Add({IsRela ? DT_RELACOUNT : DT_RELCOUNT, NumRelativeRels}); } } if (Out::RelaPlt && Out::RelaPlt->hasRelocs()) { Add({DT_JMPREL, Out::RelaPlt}); Add({DT_PLTRELSZ, Out::RelaPlt->Size}); Add({Config->EMachine == EM_MIPS ? DT_MIPS_PLTGOT : DT_PLTGOT, In::GotPlt}); Add({DT_PLTREL, uint64_t(Config->Rela ? DT_RELA : DT_REL)}); } Add({DT_SYMTAB, Out::DynSymTab}); Add({DT_SYMENT, sizeof(Elf_Sym)}); Add({DT_STRTAB, Out::DynStrTab}); Add({DT_STRSZ, Out::DynStrTab->Size}); if (Out::GnuHashTab) Add({DT_GNU_HASH, Out::GnuHashTab}); if (Out::HashTab) Add({DT_HASH, Out::HashTab}); if (Out::PreinitArray) { Add({DT_PREINIT_ARRAY, Out::PreinitArray}); Add({DT_PREINIT_ARRAYSZ, Out::PreinitArray, Entry::SecSize}); } if (Out::InitArray) { Add({DT_INIT_ARRAY, Out::InitArray}); Add({DT_INIT_ARRAYSZ, Out::InitArray, Entry::SecSize}); } if (Out::FiniArray) { Add({DT_FINI_ARRAY, Out::FiniArray}); Add({DT_FINI_ARRAYSZ, Out::FiniArray, Entry::SecSize}); } if (SymbolBody *B = Symtab::X->find(Config->Init)) Add({DT_INIT, B}); if (SymbolBody *B = Symtab::X->find(Config->Fini)) Add({DT_FINI, B}); bool HasVerNeed = Out::VerNeed->getNeedNum() != 0; if (HasVerNeed || Out::VerDef) Add({DT_VERSYM, Out::VerSym}); if (Out::VerDef) { Add({DT_VERDEF, Out::VerDef}); Add({DT_VERDEFNUM, getVerDefNum()}); } if (HasVerNeed) { Add({DT_VERNEED, Out::VerNeed}); Add({DT_VERNEEDNUM, Out::VerNeed->getNeedNum()}); } if (Config->EMachine == EM_MIPS) { Add({DT_MIPS_RLD_VERSION, 1}); Add({DT_MIPS_FLAGS, RHF_NOTPOT}); Add({DT_MIPS_BASE_ADDRESS, Config->ImageBase}); Add({DT_MIPS_SYMTABNO, Out::DynSymTab->getNumSymbols()}); Add({DT_MIPS_LOCAL_GOTNO, In::Got->getMipsLocalEntriesNum()}); if (const SymbolBody *B = In::Got->getMipsFirstGlobalEntry()) Add({DT_MIPS_GOTSYM, B->DynsymIndex}); else Add({DT_MIPS_GOTSYM, Out::DynSymTab->getNumSymbols()}); Add({DT_PLTGOT, In::Got}); if (Out::MipsRldMap) Add({DT_MIPS_RLD_MAP, Out::MipsRldMap}); } // +1 for DT_NULL this->Size = (Entries.size() + 1) * this->Entsize; } template void DynamicSection::writeTo(uint8_t *Buf) { auto *P = reinterpret_cast(Buf); for (const Entry &E : Entries) { P->d_tag = E.Tag; switch (E.Kind) { case Entry::SecAddr: P->d_un.d_ptr = E.OutSec->Addr; break; case Entry::InSecAddr: P->d_un.d_ptr = E.InSec->OutSec->Addr + E.InSec->OutSecOff; break; case Entry::SecSize: P->d_un.d_val = E.OutSec->Size; break; case Entry::SymAddr: P->d_un.d_ptr = E.Sym->template getVA(); break; case Entry::PlainInt: P->d_un.d_val = E.Val; break; } ++P; } } template EhFrameHeader::EhFrameHeader() : OutputSectionBase(".eh_frame_hdr", SHT_PROGBITS, SHF_ALLOC) {} // .eh_frame_hdr contains a binary search table of pointers to FDEs. // Each entry of the search table consists of two values, // the starting PC from where FDEs covers, and the FDE's address. // It is sorted by PC. template void EhFrameHeader::writeTo(uint8_t *Buf) { const endianness E = ELFT::TargetEndianness; // Sort the FDE list by their PC and uniqueify. Usually there is only // one FDE for a PC (i.e. function), but if ICF merges two functions // into one, there can be more than one FDEs pointing to the address. auto Less = [](const FdeData &A, const FdeData &B) { return A.Pc < B.Pc; }; std::stable_sort(Fdes.begin(), Fdes.end(), Less); auto Eq = [](const FdeData &A, const FdeData &B) { return A.Pc == B.Pc; }; Fdes.erase(std::unique(Fdes.begin(), Fdes.end(), Eq), Fdes.end()); Buf[0] = 1; Buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4; Buf[2] = DW_EH_PE_udata4; Buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; write32(Buf + 4, Out::EhFrame->Addr - this->Addr - 4); write32(Buf + 8, Fdes.size()); Buf += 12; uintX_t VA = this->Addr; for (FdeData &Fde : Fdes) { write32(Buf, Fde.Pc - VA); write32(Buf + 4, Fde.FdeVA - VA); Buf += 8; } } template void EhFrameHeader::finalize() { // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs. this->Size = 12 + Out::EhFrame->NumFdes * 8; } template void EhFrameHeader::addFde(uint32_t Pc, uint32_t FdeVA) { Fdes.push_back({Pc, FdeVA}); } template static uint64_t getEntsize(uint32_t Type) { switch (Type) { case SHT_RELA: return sizeof(typename ELFT::Rela); case SHT_REL: return sizeof(typename ELFT::Rel); case SHT_MIPS_REGINFO: return sizeof(Elf_Mips_RegInfo); case SHT_MIPS_OPTIONS: return sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo); case SHT_MIPS_ABIFLAGS: return sizeof(Elf_Mips_ABIFlags); default: return 0; } } template OutputSection::OutputSection(StringRef Name, uint32_t Type, uintX_t Flags) : OutputSectionBase(Name, Type, Flags) { this->Entsize = getEntsize(Type); } template void OutputSection::finalize() { uint32_t Type = this->Type; if (this->Flags & SHF_LINK_ORDER) { if (!Config->Relocatable) { // SHF_LINK_ORDER only has meaning in relocatable objects this->Flags &= ~SHF_LINK_ORDER; } else if (!this->Sections.empty()) { // When doing a relocatable link we must preserve the link order // dependency of sections with the SHF_LINK_ORDER flag. The dependency // is indicated by the sh_link field. We need to translate the // InputSection sh_link to the OutputSection sh_link, all InputSections // in the OutputSection have the same dependency. if (auto *D = this->Sections.front()->getLinkOrderDep()) this->Link = D->OutSec->SectionIndex; } } if (Type != SHT_RELA && Type != SHT_REL) return; this->Link = Out::SymTab->SectionIndex; // sh_info for SHT_REL[A] sections should contain the section header index of // the section to which the relocation applies. InputSectionBase *S = Sections[0]->getRelocatedSection(); this->Info = S->OutSec->SectionIndex; } template void OutputSection::addSection(InputSectionData *C) { assert(C->Live); auto *S = cast>(C); Sections.push_back(S); S->OutSec = this; this->updateAlignment(S->Alignment); // Keep sh_entsize value of the input section to be able to perform merging // later during a final linking using the generated relocatable object. if (Config->Relocatable && (S->Flags & SHF_MERGE)) this->Entsize = S->Entsize; } // This function is called after we sort input sections // and scan relocations to setup sections' offsets. template void OutputSection::assignOffsets() { uintX_t Off = this->Size; for (InputSection *S : Sections) { Off = alignTo(Off, S->Alignment); S->OutSecOff = Off; Off += S->getSize(); } this->Size = Off; } template void OutputSection::sort( std::function *S)> Order) { typedef std::pair *> Pair; auto Comp = [](const Pair &A, const Pair &B) { return A.first < B.first; }; std::vector V; for (InputSection *S : Sections) V.push_back({Order(S), S}); std::stable_sort(V.begin(), V.end(), Comp); Sections.clear(); for (Pair &P : V) Sections.push_back(P.second); } // Sorts input sections by section name suffixes, so that .foo.N comes // before .foo.M if N < M. Used to sort .{init,fini}_array.N sections. // We want to keep the original order if the priorities are the same // because the compiler keeps the original initialization order in a // translation unit and we need to respect that. // For more detail, read the section of the GCC's manual about init_priority. template void OutputSection::sortInitFini() { // Sort sections by priority. sort([](InputSection *S) { return getPriority(S->Name); }); } // Returns true if S matches /Filename.?\.o$/. static bool isCrtBeginEnd(StringRef S, StringRef Filename) { if (!S.endswith(".o")) return false; S = S.drop_back(2); if (S.endswith(Filename)) return true; return !S.empty() && S.drop_back().endswith(Filename); } static bool isCrtbegin(StringRef S) { return isCrtBeginEnd(S, "crtbegin"); } static bool isCrtend(StringRef S) { return isCrtBeginEnd(S, "crtend"); } // .ctors and .dtors are sorted by this priority from highest to lowest. // // 1. The section was contained in crtbegin (crtbegin contains // some sentinel value in its .ctors and .dtors so that the runtime // can find the beginning of the sections.) // // 2. The section has an optional priority value in the form of ".ctors.N" // or ".dtors.N" where N is a number. Unlike .{init,fini}_array, // they are compared as string rather than number. // // 3. The section is just ".ctors" or ".dtors". // // 4. The section was contained in crtend, which contains an end marker. // // In an ideal world, we don't need this function because .init_array and // .ctors are duplicate features (and .init_array is newer.) However, there // are too many real-world use cases of .ctors, so we had no choice to // support that with this rather ad-hoc semantics. template static bool compCtors(const InputSection *A, const InputSection *B) { bool BeginA = isCrtbegin(A->getFile()->getName()); bool BeginB = isCrtbegin(B->getFile()->getName()); if (BeginA != BeginB) return BeginA; bool EndA = isCrtend(A->getFile()->getName()); bool EndB = isCrtend(B->getFile()->getName()); if (EndA != EndB) return EndB; StringRef X = A->Name; StringRef Y = B->Name; assert(X.startswith(".ctors") || X.startswith(".dtors")); assert(Y.startswith(".ctors") || Y.startswith(".dtors")); X = X.substr(6); Y = Y.substr(6); if (X.empty() && Y.empty()) return false; return X < Y; } // Sorts input sections by the special rules for .ctors and .dtors. // Unfortunately, the rules are different from the one for .{init,fini}_array. // Read the comment above. template void OutputSection::sortCtorsDtors() { std::stable_sort(Sections.begin(), Sections.end(), compCtors); } static void fill(uint8_t *Buf, size_t Size, ArrayRef A) { size_t I = 0; for (; I + A.size() < Size; I += A.size()) memcpy(Buf + I, A.data(), A.size()); memcpy(Buf + I, A.data(), Size - I); } template void OutputSection::writeTo(uint8_t *Buf) { ArrayRef Filler = Script::X->getFiller(this->Name); if (!Filler.empty()) fill(Buf, this->Size, Filler); if (Config->Threads) { parallel_for_each(Sections.begin(), Sections.end(), [=](InputSection *C) { C->writeTo(Buf); }); } else { for (InputSection *C : Sections) C->writeTo(Buf); } // Linker scripts may have BYTE()-family commands with which you // can write arbitrary bytes to the output. Process them if any. Script::X->writeDataBytes(this->Name, Buf); } template EhOutputSection::EhOutputSection() : OutputSectionBase(".eh_frame", SHT_PROGBITS, SHF_ALLOC) {} // Search for an existing CIE record or create a new one. // CIE records from input object files are uniquified by their contents // and where their relocations point to. template template CieRecord *EhOutputSection::addCie(EhSectionPiece &Piece, EhInputSection *Sec, ArrayRef Rels) { const endianness E = ELFT::TargetEndianness; if (read32(Piece.data().data() + 4) != 0) fatal("CIE expected at beginning of .eh_frame: " + Sec->Name); SymbolBody *Personality = nullptr; unsigned FirstRelI = Piece.FirstRelocation; if (FirstRelI != (unsigned)-1) Personality = &Sec->getFile()->getRelocTargetSym(Rels[FirstRelI]); // Search for an existing CIE by CIE contents/relocation target pair. CieRecord *Cie = &CieMap[{Piece.data(), Personality}]; // If not found, create a new one. if (Cie->Piece == nullptr) { Cie->Piece = &Piece; Cies.push_back(Cie); } return Cie; } // There is one FDE per function. Returns true if a given FDE // points to a live function. template template bool EhOutputSection::isFdeLive(EhSectionPiece &Piece, EhInputSection *Sec, ArrayRef Rels) { unsigned FirstRelI = Piece.FirstRelocation; if (FirstRelI == (unsigned)-1) fatal("FDE doesn't reference another section"); const RelTy &Rel = Rels[FirstRelI]; SymbolBody &B = Sec->getFile()->getRelocTargetSym(Rel); auto *D = dyn_cast>(&B); if (!D || !D->Section) return false; InputSectionBase *Target = D->Section->Repl; return Target && Target->Live; } // .eh_frame is a sequence of CIE or FDE records. In general, there // is one CIE record per input object file which is followed by // a list of FDEs. This function searches an existing CIE or create a new // one and associates FDEs to the CIE. template template void EhOutputSection::addSectionAux(EhInputSection *Sec, ArrayRef Rels) { const endianness E = ELFT::TargetEndianness; DenseMap OffsetToCie; for (EhSectionPiece &Piece : Sec->Pieces) { // The empty record is the end marker. if (Piece.size() == 4) return; size_t Offset = Piece.InputOff; uint32_t ID = read32(Piece.data().data() + 4); if (ID == 0) { OffsetToCie[Offset] = addCie(Piece, Sec, Rels); continue; } uint32_t CieOffset = Offset + 4 - ID; CieRecord *Cie = OffsetToCie[CieOffset]; if (!Cie) fatal("invalid CIE reference"); if (!isFdeLive(Piece, Sec, Rels)) continue; Cie->FdePieces.push_back(&Piece); NumFdes++; } } template void EhOutputSection::addSection(InputSectionData *C) { auto *Sec = cast>(C); Sec->OutSec = this; this->updateAlignment(Sec->Alignment); Sections.push_back(Sec); // .eh_frame is a sequence of CIE or FDE records. This function // splits it into pieces so that we can call // SplitInputSection::getSectionPiece on the section. Sec->split(); if (Sec->Pieces.empty()) return; if (Sec->NumRelocations) { if (Sec->AreRelocsRela) addSectionAux(Sec, Sec->relas()); else addSectionAux(Sec, Sec->rels()); return; } addSectionAux(Sec, makeArrayRef(nullptr, nullptr)); } template static void writeCieFde(uint8_t *Buf, ArrayRef D) { memcpy(Buf, D.data(), D.size()); // Fix the size field. -4 since size does not include the size field itself. const endianness E = ELFT::TargetEndianness; write32(Buf, alignTo(D.size(), sizeof(typename ELFT::uint)) - 4); } template void EhOutputSection::finalize() { if (this->Size) return; // Already finalized. size_t Off = 0; for (CieRecord *Cie : Cies) { Cie->Piece->OutputOff = Off; Off += alignTo(Cie->Piece->size(), sizeof(uintX_t)); for (EhSectionPiece *Fde : Cie->FdePieces) { Fde->OutputOff = Off; Off += alignTo(Fde->size(), sizeof(uintX_t)); } } this->Size = Off; } template static uint64_t readFdeAddr(uint8_t *Buf, int Size) { const endianness E = ELFT::TargetEndianness; switch (Size) { case DW_EH_PE_udata2: return read16(Buf); case DW_EH_PE_udata4: return read32(Buf); case DW_EH_PE_udata8: return read64(Buf); case DW_EH_PE_absptr: if (ELFT::Is64Bits) return read64(Buf); return read32(Buf); } fatal("unknown FDE size encoding"); } // Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to. // We need it to create .eh_frame_hdr section. template typename ELFT::uint EhOutputSection::getFdePc(uint8_t *Buf, size_t FdeOff, uint8_t Enc) { // The starting address to which this FDE applies is // stored at FDE + 8 byte. size_t Off = FdeOff + 8; uint64_t Addr = readFdeAddr(Buf + Off, Enc & 0x7); if ((Enc & 0x70) == DW_EH_PE_absptr) return Addr; if ((Enc & 0x70) == DW_EH_PE_pcrel) return Addr + this->Addr + Off; fatal("unknown FDE size relative encoding"); } template void EhOutputSection::writeTo(uint8_t *Buf) { const endianness E = ELFT::TargetEndianness; for (CieRecord *Cie : Cies) { size_t CieOffset = Cie->Piece->OutputOff; writeCieFde(Buf + CieOffset, Cie->Piece->data()); for (EhSectionPiece *Fde : Cie->FdePieces) { size_t Off = Fde->OutputOff; writeCieFde(Buf + Off, Fde->data()); // FDE's second word should have the offset to an associated CIE. // Write it. write32(Buf + Off + 4, Off + 4 - CieOffset); } } for (EhInputSection *S : Sections) S->relocate(Buf, nullptr); // Construct .eh_frame_hdr. .eh_frame_hdr is a binary search table // to get a FDE from an address to which FDE is applied. So here // we obtain two addresses and pass them to EhFrameHdr object. if (Out::EhFrameHdr) { for (CieRecord *Cie : Cies) { uint8_t Enc = getFdeEncoding(Cie->Piece->data()); for (SectionPiece *Fde : Cie->FdePieces) { uintX_t Pc = getFdePc(Buf, Fde->OutputOff, Enc); uintX_t FdeVA = this->Addr + Fde->OutputOff; Out::EhFrameHdr->addFde(Pc, FdeVA); } } } } template MergeOutputSection::MergeOutputSection(StringRef Name, uint32_t Type, uintX_t Flags, uintX_t Alignment) : OutputSectionBase(Name, Type, Flags), Builder(StringTableBuilder::RAW, Alignment) {} template void MergeOutputSection::writeTo(uint8_t *Buf) { Builder.write(Buf); } template void MergeOutputSection::addSection(InputSectionData *C) { auto *Sec = cast>(C); Sec->OutSec = this; this->updateAlignment(Sec->Alignment); this->Entsize = Sec->Entsize; Sections.push_back(Sec); auto HashI = Sec->Hashes.begin(); for (auto I = Sec->Pieces.begin(), E = Sec->Pieces.end(); I != E; ++I) { SectionPiece &Piece = *I; uint32_t Hash = *HashI; ++HashI; if (!Piece.Live) continue; StringRef Data = toStringRef(Sec->getData(I)); CachedHashStringRef V(Data, Hash); uintX_t OutputOffset = Builder.add(V); if (!shouldTailMerge()) Piece.OutputOff = OutputOffset; } } template unsigned MergeOutputSection::getOffset(CachedHashStringRef Val) { return Builder.getOffset(Val); } template bool MergeOutputSection::shouldTailMerge() const { return Config->Optimize >= 2 && this->Flags & SHF_STRINGS; } template void MergeOutputSection::finalize() { if (shouldTailMerge()) Builder.finalize(); else Builder.finalizeInOrder(); this->Size = Builder.getSize(); } template void MergeOutputSection::finalizePieces() { for (MergeInputSection *Sec : Sections) Sec->finalizePieces(); } template StringTableSection::StringTableSection(StringRef Name, bool Dynamic) : OutputSectionBase(Name, SHT_STRTAB, Dynamic ? (uintX_t)SHF_ALLOC : 0), Dynamic(Dynamic) { // ELF string tables start with a NUL byte, so 1. this->Size = 1; } // Adds a string to the string table. If HashIt is true we hash and check for // duplicates. It is optional because the name of global symbols are already // uniqued and hashing them again has a big cost for a small value: uniquing // them with some other string that happens to be the same. template unsigned StringTableSection::addString(StringRef S, bool HashIt) { if (HashIt) { auto R = StringMap.insert(std::make_pair(S, this->Size)); if (!R.second) return R.first->second; } unsigned Ret = this->Size; this->Size = this->Size + S.size() + 1; Strings.push_back(S); return Ret; } template void StringTableSection::writeTo(uint8_t *Buf) { // ELF string tables start with NUL byte, so advance the pointer by one. ++Buf; for (StringRef S : Strings) { memcpy(Buf, S.data(), S.size()); Buf += S.size() + 1; } } template typename ELFT::uint DynamicReloc::getOffset() const { if (OutputSec) return OutputSec->Addr + OffsetInSec; return InputSec->OutSec->Addr + InputSec->getOffset(OffsetInSec); } template typename ELFT::uint DynamicReloc::getAddend() const { if (UseSymVA) return Sym->getVA(Addend); return Addend; } template uint32_t DynamicReloc::getSymIndex() const { if (Sym && !UseSymVA) return Sym->DynsymIndex; return 0; } template SymbolTableSection::SymbolTableSection( StringTableSection &StrTabSec) : OutputSectionBase(StrTabSec.isDynamic() ? ".dynsym" : ".symtab", StrTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB, StrTabSec.isDynamic() ? (uintX_t)SHF_ALLOC : 0), StrTabSec(StrTabSec) { this->Entsize = sizeof(Elf_Sym); this->Addralign = sizeof(uintX_t); } // Orders symbols according to their positions in the GOT, // in compliance with MIPS ABI rules. // See "Global Offset Table" in Chapter 5 in the following document // for detailed description: // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf static bool sortMipsSymbols(const SymbolBody *L, const SymbolBody *R) { // Sort entries related to non-local preemptible symbols by GOT indexes. // All other entries go to the first part of GOT in arbitrary order. bool LIsInLocalGot = !L->IsInGlobalMipsGot; bool RIsInLocalGot = !R->IsInGlobalMipsGot; if (LIsInLocalGot || RIsInLocalGot) return !RIsInLocalGot; return L->GotIndex < R->GotIndex; } static uint8_t getSymbolBinding(SymbolBody *Body) { Symbol *S = Body->symbol(); if (Config->Relocatable) return S->Binding; uint8_t Visibility = S->Visibility; if (Visibility != STV_DEFAULT && Visibility != STV_PROTECTED) return STB_LOCAL; if (Config->NoGnuUnique && S->Binding == STB_GNU_UNIQUE) return STB_GLOBAL; return S->Binding; } template void SymbolTableSection::finalize() { if (this->Size) return; // Already finalized. this->Size = getNumSymbols() * sizeof(Elf_Sym); this->Link = StrTabSec.SectionIndex; this->Info = NumLocals + 1; if (Config->Relocatable) { size_t I = NumLocals; for (const SymbolTableEntry &S : Symbols) S.Symbol->DynsymIndex = ++I; return; } if (!StrTabSec.isDynamic()) { std::stable_sort(Symbols.begin(), Symbols.end(), [](const SymbolTableEntry &L, const SymbolTableEntry &R) { return getSymbolBinding(L.Symbol) == STB_LOCAL && getSymbolBinding(R.Symbol) != STB_LOCAL; }); return; } if (Out::GnuHashTab) // NB: It also sorts Symbols to meet the GNU hash table requirements. Out::GnuHashTab->addSymbols(Symbols); else if (Config->EMachine == EM_MIPS) std::stable_sort(Symbols.begin(), Symbols.end(), [](const SymbolTableEntry &L, const SymbolTableEntry &R) { return sortMipsSymbols(L.Symbol, R.Symbol); }); size_t I = 0; for (const SymbolTableEntry &S : Symbols) S.Symbol->DynsymIndex = ++I; } template void SymbolTableSection::addSymbol(SymbolBody *B) { Symbols.push_back({B, StrTabSec.addString(B->getName(), false)}); } template void SymbolTableSection::writeTo(uint8_t *Buf) { Buf += sizeof(Elf_Sym); // All symbols with STB_LOCAL binding precede the weak and global symbols. // .dynsym only contains global symbols. if (Config->Discard != DiscardPolicy::All && !StrTabSec.isDynamic()) writeLocalSymbols(Buf); writeGlobalSymbols(Buf); } template void SymbolTableSection::writeLocalSymbols(uint8_t *&Buf) { // Iterate over all input object files to copy their local symbols // to the output symbol table pointed by Buf. for (ObjectFile *File : Symtab::X->getObjectFiles()) { for (const std::pair *, size_t> &P : File->KeptLocalSyms) { const DefinedRegular &Body = *P.first; InputSectionBase *Section = Body.Section; auto *ESym = reinterpret_cast(Buf); if (!Section) { ESym->st_shndx = SHN_ABS; ESym->st_value = Body.Value; } else { const OutputSectionBase *OutSec = Section->OutSec; ESym->st_shndx = OutSec->SectionIndex; ESym->st_value = OutSec->Addr + Section->getOffset(Body); } ESym->st_name = P.second; ESym->st_size = Body.template getSize(); ESym->setBindingAndType(STB_LOCAL, Body.Type); Buf += sizeof(*ESym); } } } template void SymbolTableSection::writeGlobalSymbols(uint8_t *Buf) { // Write the internal symbol table contents to the output symbol table // pointed by Buf. auto *ESym = reinterpret_cast(Buf); for (const SymbolTableEntry &S : Symbols) { SymbolBody *Body = S.Symbol; size_t StrOff = S.StrTabOffset; uint8_t Type = Body->Type; uintX_t Size = Body->getSize(); ESym->setBindingAndType(getSymbolBinding(Body), Type); ESym->st_size = Size; ESym->st_name = StrOff; ESym->setVisibility(Body->symbol()->Visibility); ESym->st_value = Body->getVA(); if (const OutputSectionBase *OutSec = getOutputSection(Body)) ESym->st_shndx = OutSec->SectionIndex; else if (isa>(Body)) ESym->st_shndx = SHN_ABS; if (Config->EMachine == EM_MIPS) { // On MIPS we need to mark symbol which has a PLT entry and requires // pointer equality by STO_MIPS_PLT flag. That is necessary to help // dynamic linker distinguish such symbols and MIPS lazy-binding stubs. // https://sourceware.org/ml/binutils/2008-07/txt00000.txt if (Body->isInPlt() && Body->NeedsCopyOrPltAddr) ESym->st_other |= STO_MIPS_PLT; if (Config->Relocatable) { auto *D = dyn_cast>(Body); if (D && D->isMipsPIC()) ESym->st_other |= STO_MIPS_PIC; } } ++ESym; } } template const OutputSectionBase * SymbolTableSection::getOutputSection(SymbolBody *Sym) { switch (Sym->kind()) { case SymbolBody::DefinedSyntheticKind: return cast>(Sym)->Section; case SymbolBody::DefinedRegularKind: { auto &D = cast>(*Sym); if (D.Section) return D.Section->OutSec; break; } case SymbolBody::DefinedCommonKind: return In::Common->OutSec; case SymbolBody::SharedKind: if (cast>(Sym)->needsCopy()) return Out::Bss; break; case SymbolBody::UndefinedKind: case SymbolBody::LazyArchiveKind: case SymbolBody::LazyObjectKind: break; } return nullptr; } template VersionDefinitionSection::VersionDefinitionSection() : OutputSectionBase(".gnu.version_d", SHT_GNU_verdef, SHF_ALLOC) { this->Addralign = sizeof(uint32_t); } static StringRef getFileDefName() { if (!Config->SoName.empty()) return Config->SoName; return Config->OutputFile; } template void VersionDefinitionSection::finalize() { FileDefNameOff = Out::DynStrTab->addString(getFileDefName()); for (VersionDefinition &V : Config->VersionDefinitions) V.NameOff = Out::DynStrTab->addString(V.Name); this->Size = (sizeof(Elf_Verdef) + sizeof(Elf_Verdaux)) * getVerDefNum(); this->Link = Out::DynStrTab->SectionIndex; // sh_info should be set to the number of definitions. This fact is missed in // documentation, but confirmed by binutils community: // https://sourceware.org/ml/binutils/2014-11/msg00355.html this->Info = getVerDefNum(); } template void VersionDefinitionSection::writeOne(uint8_t *Buf, uint32_t Index, StringRef Name, size_t NameOff) { auto *Verdef = reinterpret_cast(Buf); Verdef->vd_version = 1; Verdef->vd_cnt = 1; Verdef->vd_aux = sizeof(Elf_Verdef); Verdef->vd_next = sizeof(Elf_Verdef) + sizeof(Elf_Verdaux); Verdef->vd_flags = (Index == 1 ? VER_FLG_BASE : 0); Verdef->vd_ndx = Index; Verdef->vd_hash = hashSysV(Name); auto *Verdaux = reinterpret_cast(Buf + sizeof(Elf_Verdef)); Verdaux->vda_name = NameOff; Verdaux->vda_next = 0; } template void VersionDefinitionSection::writeTo(uint8_t *Buf) { writeOne(Buf, 1, getFileDefName(), FileDefNameOff); for (VersionDefinition &V : Config->VersionDefinitions) { Buf += sizeof(Elf_Verdef) + sizeof(Elf_Verdaux); writeOne(Buf, V.Id, V.Name, V.NameOff); } // Need to terminate the last version definition. Elf_Verdef *Verdef = reinterpret_cast(Buf); Verdef->vd_next = 0; } template VersionTableSection::VersionTableSection() : OutputSectionBase(".gnu.version", SHT_GNU_versym, SHF_ALLOC) { this->Addralign = sizeof(uint16_t); } template void VersionTableSection::finalize() { this->Size = sizeof(Elf_Versym) * (Out::DynSymTab->getSymbols().size() + 1); this->Entsize = sizeof(Elf_Versym); // At the moment of june 2016 GNU docs does not mention that sh_link field // should be set, but Sun docs do. Also readelf relies on this field. this->Link = Out::DynSymTab->SectionIndex; } template void VersionTableSection::writeTo(uint8_t *Buf) { auto *OutVersym = reinterpret_cast(Buf) + 1; for (const SymbolTableEntry &S : Out::DynSymTab->getSymbols()) { OutVersym->vs_index = S.Symbol->symbol()->VersionId; ++OutVersym; } } template VersionNeedSection::VersionNeedSection() : OutputSectionBase(".gnu.version_r", SHT_GNU_verneed, SHF_ALLOC) { this->Addralign = sizeof(uint32_t); // Identifiers in verneed section start at 2 because 0 and 1 are reserved // for VER_NDX_LOCAL and VER_NDX_GLOBAL. // First identifiers are reserved by verdef section if it exist. NextIndex = getVerDefNum() + 1; } template void VersionNeedSection::addSymbol(SharedSymbol *SS) { if (!SS->Verdef) { SS->symbol()->VersionId = VER_NDX_GLOBAL; return; } SharedFile *F = SS->file(); // If we don't already know that we need an Elf_Verneed for this DSO, prepare // to create one by adding it to our needed list and creating a dynstr entry // for the soname. if (F->VerdefMap.empty()) Needed.push_back({F, Out::DynStrTab->addString(F->getSoName())}); typename SharedFile::NeededVer &NV = F->VerdefMap[SS->Verdef]; // If we don't already know that we need an Elf_Vernaux for this Elf_Verdef, // prepare to create one by allocating a version identifier and creating a // dynstr entry for the version name. if (NV.Index == 0) { NV.StrTab = Out::DynStrTab->addString( SS->file()->getStringTable().data() + SS->Verdef->getAux()->vda_name); NV.Index = NextIndex++; } SS->symbol()->VersionId = NV.Index; } template void VersionNeedSection::writeTo(uint8_t *Buf) { // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs. auto *Verneed = reinterpret_cast(Buf); auto *Vernaux = reinterpret_cast(Verneed + Needed.size()); for (std::pair *, size_t> &P : Needed) { // Create an Elf_Verneed for this DSO. Verneed->vn_version = 1; Verneed->vn_cnt = P.first->VerdefMap.size(); Verneed->vn_file = P.second; Verneed->vn_aux = reinterpret_cast(Vernaux) - reinterpret_cast(Verneed); Verneed->vn_next = sizeof(Elf_Verneed); ++Verneed; // Create the Elf_Vernauxs for this Elf_Verneed. The loop iterates over // VerdefMap, which will only contain references to needed version // definitions. Each Elf_Vernaux is based on the information contained in // the Elf_Verdef in the source DSO. This loop iterates over a std::map of // pointers, but is deterministic because the pointers refer to Elf_Verdef // data structures within a single input file. for (auto &NV : P.first->VerdefMap) { Vernaux->vna_hash = NV.first->vd_hash; Vernaux->vna_flags = 0; Vernaux->vna_other = NV.second.Index; Vernaux->vna_name = NV.second.StrTab; Vernaux->vna_next = sizeof(Elf_Vernaux); ++Vernaux; } Vernaux[-1].vna_next = 0; } Verneed[-1].vn_next = 0; } template void VersionNeedSection::finalize() { this->Link = Out::DynStrTab->SectionIndex; this->Info = Needed.size(); unsigned Size = Needed.size() * sizeof(Elf_Verneed); for (std::pair *, size_t> &P : Needed) Size += P.first->VerdefMap.size() * sizeof(Elf_Vernaux); this->Size = Size; } template static typename ELFT::uint getOutFlags(InputSectionBase *S) { return S->Flags & ~SHF_GROUP & ~SHF_COMPRESSED; } template static SectionKey createKey(InputSectionBase *C, StringRef OutsecName) { typedef typename ELFT::uint uintX_t; uintX_t Flags = getOutFlags(C); // For SHF_MERGE we create different output sections for each alignment. // This makes each output section simple and keeps a single level mapping from // input to output. // In case of relocatable object generation we do not try to perform merging // and treat SHF_MERGE sections as regular ones, but also create different // output sections for them to allow merging at final linking stage. uintX_t Alignment = 0; if (isa>(C) || (Config->Relocatable && (C->Flags & SHF_MERGE))) Alignment = std::max(C->Alignment, C->Entsize); return SectionKey{OutsecName, C->Type, Flags, Alignment}; } template std::pair OutputSectionFactory::create(InputSectionBase *C, StringRef OutsecName) { SectionKey Key = createKey(C, OutsecName); return create(Key, C); } template std::pair OutputSectionFactory::create(const SectionKey &Key, InputSectionBase *C) { uintX_t Flags = getOutFlags(C); OutputSectionBase *&Sec = Map[Key]; if (Sec) { Sec->Flags |= Flags; return {Sec, false}; } uint32_t Type = C->Type; switch (C->kind()) { case InputSectionBase::Regular: case InputSectionBase::Synthetic: Sec = make>(Key.Name, Type, Flags); break; case InputSectionBase::EHFrame: return {Out::EhFrame, false}; case InputSectionBase::Merge: Sec = make>(Key.Name, Type, Flags, Key.Alignment); break; } return {Sec, true}; } template typename lld::elf::SectionKey DenseMapInfo>::getEmptyKey() { return SectionKey{DenseMapInfo::getEmptyKey(), 0, 0, 0}; } template typename lld::elf::SectionKey DenseMapInfo>::getTombstoneKey() { return SectionKey{DenseMapInfo::getTombstoneKey(), 0, 0, 0}; } template unsigned DenseMapInfo>::getHashValue(const Key &Val) { return hash_combine(Val.Name, Val.Type, Val.Flags, Val.Alignment); } template bool DenseMapInfo>::isEqual(const Key &LHS, const Key &RHS) { return DenseMapInfo::isEqual(LHS.Name, RHS.Name) && LHS.Type == RHS.Type && LHS.Flags == RHS.Flags && LHS.Alignment == RHS.Alignment; } namespace llvm { template struct DenseMapInfo>; template struct DenseMapInfo>; } namespace lld { namespace elf { template void OutputSectionBase::writeHeaderTo(ELF32LE::Shdr *Shdr); template void OutputSectionBase::writeHeaderTo(ELF32BE::Shdr *Shdr); template void OutputSectionBase::writeHeaderTo(ELF64LE::Shdr *Shdr); template void OutputSectionBase::writeHeaderTo(ELF64BE::Shdr *Shdr); template class EhFrameHeader; template class EhFrameHeader; template class EhFrameHeader; template class EhFrameHeader; template class PltSection; template class PltSection; template class PltSection; template class PltSection; template class RelocationSection; template class RelocationSection; template class RelocationSection; template class RelocationSection; template class GnuHashTableSection; template class GnuHashTableSection; template class GnuHashTableSection; template class GnuHashTableSection; template class HashTableSection; template class HashTableSection; template class HashTableSection; template class HashTableSection; template class DynamicSection; template class DynamicSection; template class DynamicSection; template class DynamicSection; template class OutputSection; template class OutputSection; template class OutputSection; template class OutputSection; template class EhOutputSection; template class EhOutputSection; template class EhOutputSection; template class EhOutputSection; template class MergeOutputSection; template class MergeOutputSection; template class MergeOutputSection; template class MergeOutputSection; template class StringTableSection; template class StringTableSection; template class StringTableSection; template class StringTableSection; template class SymbolTableSection; template class SymbolTableSection; template class SymbolTableSection; template class SymbolTableSection; template class VersionTableSection; template class VersionTableSection; template class VersionTableSection; template class VersionTableSection; template class VersionNeedSection; template class VersionNeedSection; template class VersionNeedSection; template class VersionNeedSection; template class VersionDefinitionSection; template class VersionDefinitionSection; template class VersionDefinitionSection; template class VersionDefinitionSection; template class GdbIndexSection; template class GdbIndexSection; template class GdbIndexSection; template class GdbIndexSection; template class OutputSectionFactory; template class OutputSectionFactory; template class OutputSectionFactory; template class OutputSectionFactory; } }