//===- Parser.cpp - MLIR Parser Implementation ----------------------------===// // // Copyright 2019 The MLIR Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // ============================================================================= // // This file implements the parser for the MLIR textual form. // //===----------------------------------------------------------------------===// #include "mlir/Parser.h" #include "Lexer.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/Builders.h" #include "mlir/IR/MLFunction.h" #include "mlir/IR/Module.h" #include "mlir/IR/OperationSet.h" #include "mlir/IR/Types.h" #include "llvm/Support/SourceMgr.h" using namespace mlir; using llvm::SourceMgr; using llvm::SMLoc; /// Simple enum to make code read better in cases that would otherwise return a /// bool value. Failure is "true" in a boolean context. enum ParseResult { ParseSuccess, ParseFailure }; namespace { class Parser; /// This class refers to all of the state maintained globally by the parser, /// such as the current lexer position etc. The Parser base class provides /// methods to access this. class ParserState { public: ParserState(llvm::SourceMgr &sourceMgr, Module *module, SMDiagnosticHandlerTy errorReporter) : context(module->getContext()), module(module), lex(sourceMgr, errorReporter), curToken(lex.lexToken()), errorReporter(errorReporter) {} // A map from affine map identifier to AffineMap. llvm::StringMap affineMapDefinitions; private: ParserState(const ParserState &) = delete; void operator=(const ParserState &) = delete; friend class Parser; // The context we're parsing into. MLIRContext *const context; // This is the module we are parsing into. Module *const module; // The lexer for the source file we're parsing. Lexer lex; // This is the next token that hasn't been consumed yet. Token curToken; // The diagnostic error reporter. SMDiagnosticHandlerTy const errorReporter; }; } // end anonymous namespace namespace { /// This class implement support for parsing global entities like types and /// shared entities like SSA names. It is intended to be subclassed by /// specialized subparsers that include state, e.g. when a local symbol table. class Parser { public: Builder builder; Parser(ParserState &state) : builder(state.context), state(state) {} // Helper methods to get stuff from the parser-global state. ParserState &getState() const { return state; } MLIRContext *getContext() const { return state.context; } Module *getModule() { return state.module; } /// Return the current token the parser is inspecting. const Token &getToken() const { return state.curToken; } StringRef getTokenSpelling() const { return state.curToken.getSpelling(); } /// Emit an error and return failure. ParseResult emitError(const Twine &message) { return emitError(state.curToken.getLoc(), message); } ParseResult emitError(SMLoc loc, const Twine &message); /// Advance the current lexer onto the next token. void consumeToken() { assert(state.curToken.isNot(Token::eof, Token::error) && "shouldn't advance past EOF or errors"); state.curToken = state.lex.lexToken(); } /// Advance the current lexer onto the next token, asserting what the expected /// current token is. This is preferred to the above method because it leads /// to more self-documenting code with better checking. void consumeToken(Token::Kind kind) { assert(state.curToken.is(kind) && "consumed an unexpected token"); consumeToken(); } /// If the current token has the specified kind, consume it and return true. /// If not, return false. bool consumeIf(Token::Kind kind) { if (state.curToken.isNot(kind)) return false; consumeToken(kind); return true; } ParseResult parseCommaSeparatedList(Token::Kind rightToken, const std::function &parseElement, bool allowEmptyList = true); // We have two forms of parsing methods - those that return a non-null // pointer on success, and those that return a ParseResult to indicate whether // they returned a failure. The second class fills in by-reference arguments // as the results of their action. // Type parsing. Type *parsePrimitiveType(); Type *parseElementType(); VectorType *parseVectorType(); ParseResult parseDimensionListRanked(SmallVectorImpl &dimensions); Type *parseTensorType(); Type *parseMemRefType(); Type *parseFunctionType(); Type *parseType(); ParseResult parseTypeList(SmallVectorImpl &elements); // Attribute parsing. Attribute *parseAttribute(); ParseResult parseAttributeDict(SmallVectorImpl &attributes); // Polyhedral structures. AffineMap *parseAffineMapInline(); // SSA ParseResult parseSSAUse(); ParseResult parseOptionalSSAUseList(Token::Kind endToken); ParseResult parseSSAUseAndType(); ParseResult parseOptionalSSAUseAndTypeList(Token::Kind endToken); private: // The Parser is subclassed and reinstantiated. Do not add additional // non-trivial state here, add it to the ParserState class. ParserState &state; }; } // end anonymous namespace //===----------------------------------------------------------------------===// // Helper methods. //===----------------------------------------------------------------------===// ParseResult Parser::emitError(SMLoc loc, const Twine &message) { // If we hit a parse error in response to a lexer error, then the lexer // already reported the error. if (getToken().is(Token::error)) return ParseFailure; auto &sourceMgr = state.lex.getSourceMgr(); state.errorReporter(sourceMgr.GetMessage(loc, SourceMgr::DK_Error, message)); return ParseFailure; } /// Parse a comma-separated list of elements, terminated with an arbitrary /// token. This allows empty lists if allowEmptyList is true. /// /// abstract-list ::= rightToken // if allowEmptyList == true /// abstract-list ::= element (',' element)* rightToken /// ParseResult Parser:: parseCommaSeparatedList(Token::Kind rightToken, const std::function &parseElement, bool allowEmptyList) { // Handle the empty case. if (getToken().is(rightToken)) { if (!allowEmptyList) return emitError("expected list element"); consumeToken(rightToken); return ParseSuccess; } // Non-empty case starts with an element. if (parseElement()) return ParseFailure; // Otherwise we have a list of comma separated elements. while (consumeIf(Token::comma)) { if (parseElement()) return ParseFailure; } // Consume the end character. if (!consumeIf(rightToken)) return emitError("expected ',' or '" + Token::getTokenSpelling(rightToken) + "'"); return ParseSuccess; } //===----------------------------------------------------------------------===// // Type Parsing //===----------------------------------------------------------------------===// /// Parse the low-level fixed dtypes in the system. /// /// primitive-type ::= `f16` | `bf16` | `f32` | `f64` /// primitive-type ::= integer-type /// primitive-type ::= `affineint` /// Type *Parser::parsePrimitiveType() { switch (getToken().getKind()) { default: return (emitError("expected type"), nullptr); case Token::kw_bf16: consumeToken(Token::kw_bf16); return builder.getBF16Type(); case Token::kw_f16: consumeToken(Token::kw_f16); return builder.getF16Type(); case Token::kw_f32: consumeToken(Token::kw_f32); return builder.getF32Type(); case Token::kw_f64: consumeToken(Token::kw_f64); return builder.getF64Type(); case Token::kw_affineint: consumeToken(Token::kw_affineint); return builder.getAffineIntType(); case Token::inttype: { auto width = getToken().getIntTypeBitwidth(); if (!width.hasValue()) return (emitError("invalid integer width"), nullptr); consumeToken(Token::inttype); return builder.getIntegerType(width.getValue()); } } } /// Parse the element type of a tensor or memref type. /// /// element-type ::= primitive-type | vector-type /// Type *Parser::parseElementType() { if (getToken().is(Token::kw_vector)) return parseVectorType(); return parsePrimitiveType(); } /// Parse a vector type. /// /// vector-type ::= `vector` `<` const-dimension-list primitive-type `>` /// const-dimension-list ::= (integer-literal `x`)+ /// VectorType *Parser::parseVectorType() { consumeToken(Token::kw_vector); if (!consumeIf(Token::less)) return (emitError("expected '<' in vector type"), nullptr); if (getToken().isNot(Token::integer)) return (emitError("expected dimension size in vector type"), nullptr); SmallVector dimensions; while (getToken().is(Token::integer)) { // Make sure this integer value is in bound and valid. auto dimension = getToken().getUnsignedIntegerValue(); if (!dimension.hasValue()) return (emitError("invalid dimension in vector type"), nullptr); dimensions.push_back(dimension.getValue()); consumeToken(Token::integer); // Make sure we have an 'x' or something like 'xbf32'. if (getToken().isNot(Token::bare_identifier) || getTokenSpelling()[0] != 'x') return (emitError("expected 'x' in vector dimension list"), nullptr); // If we had a prefix of 'x', lex the next token immediately after the 'x'. if (getTokenSpelling().size() != 1) state.lex.resetPointer(getTokenSpelling().data() + 1); // Consume the 'x'. consumeToken(Token::bare_identifier); } // Parse the element type. auto *elementType = parsePrimitiveType(); if (!elementType) return nullptr; if (!consumeIf(Token::greater)) return (emitError("expected '>' in vector type"), nullptr); return VectorType::get(dimensions, elementType); } /// Parse a dimension list of a tensor or memref type. This populates the /// dimension list, returning -1 for the '?' dimensions. /// /// dimension-list-ranked ::= (dimension `x`)* /// dimension ::= `?` | integer-literal /// ParseResult Parser::parseDimensionListRanked(SmallVectorImpl &dimensions) { while (getToken().isAny(Token::integer, Token::question)) { if (consumeIf(Token::question)) { dimensions.push_back(-1); } else { // Make sure this integer value is in bound and valid. auto dimension = getToken().getUnsignedIntegerValue(); if (!dimension.hasValue() || (int)dimension.getValue() < 0) return emitError("invalid dimension"); dimensions.push_back((int)dimension.getValue()); consumeToken(Token::integer); } // Make sure we have an 'x' or something like 'xbf32'. if (getToken().isNot(Token::bare_identifier) || getTokenSpelling()[0] != 'x') return emitError("expected 'x' in dimension list"); // If we had a prefix of 'x', lex the next token immediately after the 'x'. if (getTokenSpelling().size() != 1) state.lex.resetPointer(getTokenSpelling().data() + 1); // Consume the 'x'. consumeToken(Token::bare_identifier); } return ParseSuccess; } /// Parse a tensor type. /// /// tensor-type ::= `tensor` `<` dimension-list element-type `>` /// dimension-list ::= dimension-list-ranked | `??` /// Type *Parser::parseTensorType() { consumeToken(Token::kw_tensor); if (!consumeIf(Token::less)) return (emitError("expected '<' in tensor type"), nullptr); bool isUnranked; SmallVector dimensions; if (consumeIf(Token::questionquestion)) { isUnranked = true; } else { isUnranked = false; if (parseDimensionListRanked(dimensions)) return nullptr; } // Parse the element type. auto elementType = parseElementType(); if (!elementType) return nullptr; if (!consumeIf(Token::greater)) return (emitError("expected '>' in tensor type"), nullptr); if (isUnranked) return builder.getTensorType(elementType); return builder.getTensorType(dimensions, elementType); } /// Parse a memref type. /// /// memref-type ::= `memref` `<` dimension-list-ranked element-type /// (`,` semi-affine-map-composition)? (`,` memory-space)? `>` /// /// semi-affine-map-composition ::= (semi-affine-map `,` )* semi-affine-map /// memory-space ::= integer-literal /* | TODO: address-space-id */ /// Type *Parser::parseMemRefType() { consumeToken(Token::kw_memref); if (!consumeIf(Token::less)) return (emitError("expected '<' in memref type"), nullptr); SmallVector dimensions; if (parseDimensionListRanked(dimensions)) return nullptr; // Parse the element type. auto elementType = parseElementType(); if (!elementType) return nullptr; // TODO: Parse semi-affine-map-composition. // TODO: Parse memory-space. if (!consumeIf(Token::greater)) return (emitError("expected '>' in memref type"), nullptr); // FIXME: Add an IR representation for memref types. return builder.getIntegerType(1); } /// Parse a function type. /// /// function-type ::= type-list-parens `->` type-list /// Type *Parser::parseFunctionType() { assert(getToken().is(Token::l_paren)); SmallVector arguments; if (parseTypeList(arguments)) return nullptr; if (!consumeIf(Token::arrow)) return (emitError("expected '->' in function type"), nullptr); SmallVector results; if (parseTypeList(results)) return nullptr; return builder.getFunctionType(arguments, results); } /// Parse an arbitrary type. /// /// type ::= primitive-type /// | vector-type /// | tensor-type /// | memref-type /// | function-type /// element-type ::= primitive-type | vector-type /// Type *Parser::parseType() { switch (getToken().getKind()) { case Token::kw_memref: return parseMemRefType(); case Token::kw_tensor: return parseTensorType(); case Token::kw_vector: return parseVectorType(); case Token::l_paren: return parseFunctionType(); default: return parsePrimitiveType(); } } /// Parse a "type list", which is a singular type, or a parenthesized list of /// types. /// /// type-list ::= type-list-parens | type /// type-list-parens ::= `(` `)` /// | `(` type (`,` type)* `)` /// ParseResult Parser::parseTypeList(SmallVectorImpl &elements) { auto parseElt = [&]() -> ParseResult { auto elt = parseType(); elements.push_back(elt); return elt ? ParseSuccess : ParseFailure; }; // If there is no parens, then it must be a singular type. if (!consumeIf(Token::l_paren)) return parseElt(); if (parseCommaSeparatedList(Token::r_paren, parseElt)) return ParseFailure; return ParseSuccess; } //===----------------------------------------------------------------------===// // Attribute parsing. //===----------------------------------------------------------------------===// /// Attribute parsing. /// /// attribute-value ::= bool-literal /// | integer-literal /// | float-literal /// | string-literal /// | `[` (attribute-value (`,` attribute-value)*)? `]` /// Attribute *Parser::parseAttribute() { switch (getToken().getKind()) { case Token::kw_true: consumeToken(Token::kw_true); return builder.getBoolAttr(true); case Token::kw_false: consumeToken(Token::kw_false); return builder.getBoolAttr(false); case Token::integer: { auto val = getToken().getUInt64IntegerValue(); if (!val.hasValue() || (int64_t)val.getValue() < 0) return (emitError("integer too large for attribute"), nullptr); consumeToken(Token::integer); return builder.getIntegerAttr((int64_t)val.getValue()); } case Token::minus: { consumeToken(Token::minus); if (getToken().is(Token::integer)) { auto val = getToken().getUInt64IntegerValue(); if (!val.hasValue() || (int64_t)-val.getValue() >= 0) return (emitError("integer too large for attribute"), nullptr); consumeToken(Token::integer); return builder.getIntegerAttr((int64_t)-val.getValue()); } return (emitError("expected constant integer or floating point value"), nullptr); } case Token::string: { auto val = getToken().getStringValue(); consumeToken(Token::string); return builder.getStringAttr(val); } case Token::l_bracket: { consumeToken(Token::l_bracket); SmallVector elements; auto parseElt = [&]() -> ParseResult { elements.push_back(parseAttribute()); return elements.back() ? ParseSuccess : ParseFailure; }; if (parseCommaSeparatedList(Token::r_bracket, parseElt)) return nullptr; return builder.getArrayAttr(elements); } default: // TODO: Handle floating point. return (emitError("expected constant attribute value"), nullptr); } } /// Attribute dictionary. /// /// attribute-dict ::= `{` `}` /// | `{` attribute-entry (`,` attribute-entry)* `}` /// attribute-entry ::= bare-id `:` attribute-value /// ParseResult Parser::parseAttributeDict( SmallVectorImpl &attributes) { consumeToken(Token::l_brace); auto parseElt = [&]() -> ParseResult { // We allow keywords as attribute names. if (getToken().isNot(Token::bare_identifier, Token::inttype) && !getToken().isKeyword()) return emitError("expected attribute name"); auto nameId = builder.getIdentifier(getTokenSpelling()); consumeToken(); if (!consumeIf(Token::colon)) return emitError("expected ':' in attribute list"); auto attr = parseAttribute(); if (!attr) return ParseFailure; attributes.push_back({nameId, attr}); return ParseSuccess; }; if (parseCommaSeparatedList(Token::r_brace, parseElt)) return ParseFailure; return ParseSuccess; } //===----------------------------------------------------------------------===// // Polyhedral structures. //===----------------------------------------------------------------------===// /// Lower precedence ops (all at the same precedence level). LNoOp is false in /// the boolean sense. enum AffineLowPrecOp { /// Null value. LNoOp, Add, Sub }; /// Higher precedence ops - all at the same precedence level. HNoOp is false in /// the boolean sense. enum AffineHighPrecOp { /// Null value. HNoOp, Mul, FloorDiv, CeilDiv, Mod }; namespace { /// This is a specialized parser for AffineMap's, maintaining the state /// transient to their bodies. class AffineMapParser : public Parser { public: explicit AffineMapParser(ParserState &state) : Parser(state) {} AffineMap *parseAffineMapInline(); private: unsigned getNumDims() const { return dims.size(); } unsigned getNumSymbols() const { return symbols.size(); } /// Returns true if the only identifiers the parser accepts in affine /// expressions are symbolic identifiers. bool isPureSymbolic() const { return pureSymbolic; } void setSymbolicParsing(bool val) { pureSymbolic = val; } // Binary affine op parsing. AffineLowPrecOp consumeIfLowPrecOp(); AffineHighPrecOp consumeIfHighPrecOp(); // Identifier lists for polyhedral structures. ParseResult parseDimIdList(); ParseResult parseSymbolIdList(); ParseResult parseDimOrSymbolId(bool isDim); AffineExpr *parseAffineExpr(); AffineExpr *parseParentheticalExpr(); AffineExpr *parseNegateExpression(AffineExpr *lhs); AffineExpr *parseIntegerExpr(); AffineExpr *parseBareIdExpr(); AffineExpr *getBinaryAffineOpExpr(AffineHighPrecOp op, AffineExpr *lhs, AffineExpr *rhs); AffineExpr *getBinaryAffineOpExpr(AffineLowPrecOp op, AffineExpr *lhs, AffineExpr *rhs); AffineExpr *parseAffineOperandExpr(AffineExpr *lhs); AffineExpr *parseAffineLowPrecOpExpr(AffineExpr *llhs, AffineLowPrecOp llhsOp); AffineExpr *parseAffineHighPrecOpExpr(AffineExpr *llhs, AffineHighPrecOp llhsOp); private: // TODO(bondhugula): could just use an vector/ArrayRef and scan the numbers. llvm::StringMap dims; llvm::StringMap symbols; /// True if the parser should allow only symbolic identifiers in affine /// expressions. bool pureSymbolic = false; }; } // end anonymous namespace /// Create an affine binary high precedence op expression (mul's, div's, mod) AffineExpr *AffineMapParser::getBinaryAffineOpExpr(AffineHighPrecOp op, AffineExpr *lhs, AffineExpr *rhs) { // TODO: make the error location info accurate. switch (op) { case Mul: if (!lhs->isSymbolic() && !rhs->isSymbolic()) { emitError("non-affine expression: at least one of the multiply " "operands has to be either a constant or symbolic"); return nullptr; } return builder.getMulExpr(lhs, rhs); case FloorDiv: if (!rhs->isSymbolic()) { emitError("non-affine expression: right operand of floordiv " "has to be either a constant or symbolic"); return nullptr; } return builder.getFloorDivExpr(lhs, rhs); case CeilDiv: if (!rhs->isSymbolic()) { emitError("non-affine expression: right operand of ceildiv " "has to be either a constant or symbolic"); return nullptr; } return builder.getCeilDivExpr(lhs, rhs); case Mod: if (!rhs->isSymbolic()) { emitError("non-affine expression: right operand of mod " "has to be either a constant or symbolic"); return nullptr; } return builder.getModExpr(lhs, rhs); case HNoOp: llvm_unreachable("can't create affine expression for null high prec op"); return nullptr; } } /// Create an affine binary low precedence op expression (add, sub). AffineExpr *AffineMapParser::getBinaryAffineOpExpr(AffineLowPrecOp op, AffineExpr *lhs, AffineExpr *rhs) { switch (op) { case AffineLowPrecOp::Add: return builder.getAddExpr(lhs, rhs); case AffineLowPrecOp::Sub: return builder.getSubExpr(lhs, rhs); case AffineLowPrecOp::LNoOp: llvm_unreachable("can't create affine expression for null low prec op"); return nullptr; } } /// Consume this token if it is a lower precedence affine op (there are only two /// precedence levels). AffineLowPrecOp AffineMapParser::consumeIfLowPrecOp() { switch (getToken().getKind()) { case Token::plus: consumeToken(Token::plus); return AffineLowPrecOp::Add; case Token::minus: consumeToken(Token::minus); return AffineLowPrecOp::Sub; default: return AffineLowPrecOp::LNoOp; } } /// Consume this token if it is a higher precedence affine op (there are only /// two precedence levels) AffineHighPrecOp AffineMapParser::consumeIfHighPrecOp() { switch (getToken().getKind()) { case Token::star: consumeToken(Token::star); return Mul; case Token::kw_floordiv: consumeToken(Token::kw_floordiv); return FloorDiv; case Token::kw_ceildiv: consumeToken(Token::kw_ceildiv); return CeilDiv; case Token::kw_mod: consumeToken(Token::kw_mod); return Mod; default: return HNoOp; } } /// Parse a high precedence op expression list: mul, div, and mod are high /// precedence binary ops, i.e., parse a /// expr_1 op_1 expr_2 op_2 ... expr_n /// where op_1, op_2 are all a AffineHighPrecOp (mul, div, mod). /// All affine binary ops are left associative. /// Given llhs, returns (llhs llhsOp lhs) op rhs, or (lhs op rhs) if llhs is /// null. If no rhs can be found, returns (llhs llhsOp lhs) or lhs if llhs is /// null. AffineExpr * AffineMapParser::parseAffineHighPrecOpExpr(AffineExpr *llhs, AffineHighPrecOp llhsOp) { AffineExpr *lhs = parseAffineOperandExpr(llhs); if (!lhs) return nullptr; // Found an LHS. Parse the remaining expression. if (AffineHighPrecOp op = consumeIfHighPrecOp()) { if (llhs) { AffineExpr *expr = getBinaryAffineOpExpr(llhsOp, llhs, lhs); if (!expr) return nullptr; return parseAffineHighPrecOpExpr(expr, op); } // No LLHS, get RHS return parseAffineHighPrecOpExpr(lhs, op); } // This is the last operand in this expression. if (llhs) return getBinaryAffineOpExpr(llhsOp, llhs, lhs); // No llhs, 'lhs' itself is the expression. return lhs; } /// Parse an affine expression inside parentheses. /// /// affine-expr ::= `(` affine-expr `)` AffineExpr *AffineMapParser::parseParentheticalExpr() { if (!consumeIf(Token::l_paren)) return (emitError("expected '('"), nullptr); if (getToken().is(Token::r_paren)) return (emitError("no expression inside parentheses"), nullptr); auto *expr = parseAffineExpr(); if (!expr) return nullptr; if (!consumeIf(Token::r_paren)) return (emitError("expected ')'"), nullptr); return expr; } /// Parse the negation expression. /// /// affine-expr ::= `-` affine-expr AffineExpr *AffineMapParser::parseNegateExpression(AffineExpr *lhs) { if (!consumeIf(Token::minus)) return (emitError("expected '-'"), nullptr); AffineExpr *operand = parseAffineOperandExpr(lhs); // Since negation has the highest precedence of all ops (including high // precedence ops) but lower than parentheses, we are only going to use // parseAffineOperandExpr instead of parseAffineExpr here. if (!operand) // Extra error message although parseAffineOperandExpr would have // complained. Leads to a better diagnostic. return (emitError("missing operand of negation"), nullptr); auto *minusOne = builder.getConstantExpr(-1); return builder.getMulExpr(minusOne, operand); } /// Parse a bare id that may appear in an affine expression. /// /// affine-expr ::= bare-id AffineExpr *AffineMapParser::parseBareIdExpr() { if (getToken().isNot(Token::bare_identifier)) return (emitError("expected bare identifier"), nullptr); StringRef sRef = getTokenSpelling(); // dims, symbols are all pairwise distinct. if (dims.count(sRef)) { if (isPureSymbolic()) return (emitError("identifier used is not a symbolic identifier"), nullptr); consumeToken(Token::bare_identifier); return builder.getDimExpr(dims.lookup(sRef)); } if (symbols.count(sRef)) { consumeToken(Token::bare_identifier); return builder.getSymbolExpr(symbols.lookup(sRef)); } return (emitError("use of undeclared identifier"), nullptr); } /// Parse a positive integral constant appearing in an affine expression. /// /// affine-expr ::= integer-literal AffineExpr *AffineMapParser::parseIntegerExpr() { // No need to handle negative numbers separately here. They are naturally // handled via the unary negation operator, although (FIXME) MININT_64 still // not correctly handled. if (getToken().isNot(Token::integer)) return (emitError("expected integer"), nullptr); auto val = getToken().getUInt64IntegerValue(); if (!val.hasValue() || (int64_t)val.getValue() < 0) { return (emitError("constant too large for affineint"), nullptr); } consumeToken(Token::integer); return builder.getConstantExpr((int64_t)val.getValue()); } /// Parses an expression that can be a valid operand of an affine expression. /// lhs: if non-null, lhs is an affine expression that is the lhs of a binary /// operator, the rhs of which is being parsed. This is used to determine /// whether an error should be emitted for a missing right operand. // Eg: for an expression without parentheses (like i + j + k + l), each // of the four identifiers is an operand. For i + j*k + l, j*k is not an // operand expression, it's an op expression and will be parsed via // parseAffineHighPrecOpExpression(). However, for i + (j*k) + -l, (j*k) and -l // are valid operands that will be parsed by this function. AffineExpr *AffineMapParser::parseAffineOperandExpr(AffineExpr *lhs) { switch (getToken().getKind()) { case Token::bare_identifier: return parseBareIdExpr(); case Token::integer: return parseIntegerExpr(); case Token::l_paren: return parseParentheticalExpr(); case Token::minus: return parseNegateExpression(lhs); case Token::kw_ceildiv: case Token::kw_floordiv: case Token::kw_mod: case Token::plus: case Token::star: if (lhs) emitError("missing right operand of binary operator"); else emitError("missing left operand of binary operator"); return nullptr; default: if (lhs) emitError("missing right operand of binary operator"); else emitError("expected affine expression"); return nullptr; } } /// Parse affine expressions that are bare-id's, integer constants, /// parenthetical affine expressions, and affine op expressions that are a /// composition of those. /// /// All binary op's associate from left to right. /// /// {add, sub} have lower precedence than {mul, div, and mod}. /// /// Add, sub'are themselves at the same precedence level. Mul, floordiv, /// ceildiv, and mod are at the same higher precedence level. Negation has /// higher precedence than any binary op. /// /// llhs: the affine expression appearing on the left of the one being parsed. /// This function will return ((llhs llhsOp lhs) op rhs) if llhs is non null, /// and lhs op rhs otherwise; if there is no rhs, llhs llhsOp lhs is returned if /// llhs is non-null; otherwise lhs is returned. This is to deal with left /// associativity. /// /// Eg: when the expression is e1 + e2*e3 + e4, with e1 as llhs, this function /// will return the affine expr equivalent of (e1 + (e2*e3)) + e4, where (e2*e3) /// will be parsed using parseAffineHighPrecOpExpr(). AffineExpr *AffineMapParser::parseAffineLowPrecOpExpr(AffineExpr *llhs, AffineLowPrecOp llhsOp) { AffineExpr *lhs; if (!(lhs = parseAffineOperandExpr(llhs))) return nullptr; // Found an LHS. Deal with the ops. if (AffineLowPrecOp lOp = consumeIfLowPrecOp()) { if (llhs) { AffineExpr *sum = getBinaryAffineOpExpr(llhsOp, llhs, lhs); return parseAffineLowPrecOpExpr(sum, lOp); } // No LLHS, get RHS and form the expression. return parseAffineLowPrecOpExpr(lhs, lOp); } if (AffineHighPrecOp hOp = consumeIfHighPrecOp()) { // We have a higher precedence op here. Get the rhs operand for the llhs // through parseAffineHighPrecOpExpr. AffineExpr *highRes = parseAffineHighPrecOpExpr(lhs, hOp); if (!highRes) return nullptr; // If llhs is null, the product forms the first operand of the yet to be // found expression. If non-null, the op to associate with llhs is llhsOp. AffineExpr *expr = llhs ? getBinaryAffineOpExpr(llhsOp, llhs, highRes) : highRes; // Recurse for subsequent low prec op's after the affine high prec op // expression. if (AffineLowPrecOp nextOp = consumeIfLowPrecOp()) return parseAffineLowPrecOpExpr(expr, nextOp); return expr; } // Last operand in the expression list. if (llhs) return getBinaryAffineOpExpr(llhsOp, llhs, lhs); // No llhs, 'lhs' itself is the expression. return lhs; } /// Parse an affine expression. /// affine-expr ::= `(` affine-expr `)` /// | `-` affine-expr /// | affine-expr `+` affine-expr /// | affine-expr `-` affine-expr /// | affine-expr `*` affine-expr /// | affine-expr `floordiv` affine-expr /// | affine-expr `ceildiv` affine-expr /// | affine-expr `mod` affine-expr /// | bare-id /// | integer-literal /// /// Additional conditions are checked depending on the production. For eg., one /// of the operands for `*` has to be either constant/symbolic; the second /// operand for floordiv, ceildiv, and mod has to be a positive integer. AffineExpr *AffineMapParser::parseAffineExpr() { return parseAffineLowPrecOpExpr(nullptr, AffineLowPrecOp::LNoOp); } /// Parse a dim or symbol from the lists appearing before the actual expressions /// of the affine map. Update our state to store the dimensional/symbolic /// identifier. 'dim': whether it's the dim list or symbol list that is being /// parsed. ParseResult AffineMapParser::parseDimOrSymbolId(bool isDim) { if (getToken().isNot(Token::bare_identifier)) return emitError("expected bare identifier"); auto sRef = getTokenSpelling(); consumeToken(Token::bare_identifier); if (dims.count(sRef)) return emitError("dimensional identifier name reused"); if (symbols.count(sRef)) return emitError("symbolic identifier name reused"); if (isDim) dims.insert({sRef, dims.size()}); else symbols.insert({sRef, symbols.size()}); return ParseSuccess; } /// Parse the list of symbolic identifiers to an affine map. ParseResult AffineMapParser::parseSymbolIdList() { if (!consumeIf(Token::l_bracket)) return emitError("expected '['"); auto parseElt = [&]() -> ParseResult { return parseDimOrSymbolId(false); }; return parseCommaSeparatedList(Token::r_bracket, parseElt); } /// Parse the list of dimensional identifiers to an affine map. ParseResult AffineMapParser::parseDimIdList() { if (!consumeIf(Token::l_paren)) return emitError("expected '(' at start of dimensional identifiers list"); auto parseElt = [&]() -> ParseResult { return parseDimOrSymbolId(true); }; return parseCommaSeparatedList(Token::r_paren, parseElt); } /// Parse an affine map definition. /// /// affine-map-inline ::= dim-and-symbol-id-lists `->` multi-dim-affine-expr /// (`size` `(` dim-size (`,` dim-size)* `)`)? /// dim-size ::= affine-expr | `min` `(` affine-expr ( `,` affine-expr)+ `)` /// /// multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `) // TODO(bondhugula): parse range size information. AffineMap *AffineMapParser::parseAffineMapInline() { // List of dimensional identifiers. if (parseDimIdList()) return nullptr; // Symbols are optional. if (getToken().is(Token::l_bracket)) { if (parseSymbolIdList()) return nullptr; } if (!consumeIf(Token::arrow)) { return (emitError("expected '->' or '['"), nullptr); } if (!consumeIf(Token::l_paren)) { emitError("expected '(' at start of affine map range"); return nullptr; } SmallVector exprs; auto parseElt = [&]() -> ParseResult { auto *elt = parseAffineExpr(); ParseResult res = elt ? ParseSuccess : ParseFailure; exprs.push_back(elt); return res; }; // Parse a multi-dimensional affine expression (a comma-separated list of 1-d // affine expressions); the list cannot be empty. // Grammar: multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `) if (parseCommaSeparatedList(Token::r_paren, parseElt, false)) return nullptr; // Parse optional range sizes. // (`size` `(` dim-size (`,` dim-size)* `)`)? // TODO: check if sizes are non-negative whenever they are constant. SmallVector rangeSizes; if (consumeIf(Token::kw_size)) { // Location of the l_paren token (if it exists) for error reporting later. auto loc = getToken().getLoc(); if (!consumeIf(Token::l_paren)) return (emitError("expected '(' at start of affine map range"), nullptr); auto parseRangeSize = [&]() -> ParseResult { auto *elt = parseAffineExpr(); ParseResult res = elt ? ParseSuccess : ParseFailure; rangeSizes.push_back(elt); return res; }; setSymbolicParsing(true); if (parseCommaSeparatedList(Token::r_paren, parseRangeSize, false)) return nullptr; if (exprs.size() > rangeSizes.size()) return (emitError(loc, "fewer range sizes than range expressions"), nullptr); if (exprs.size() < rangeSizes.size()) return (emitError(loc, "more range sizes than range expressions"), nullptr); } // Parsed a valid affine map. return builder.getAffineMap(dims.size(), symbols.size(), exprs, rangeSizes); } AffineMap *Parser::parseAffineMapInline() { return AffineMapParser(state).parseAffineMapInline(); } //===----------------------------------------------------------------------===// // SSA //===----------------------------------------------------------------------===// /// Parse a SSA operand for an instruction or statement. /// /// ssa-use ::= ssa-id | ssa-constant /// ParseResult Parser::parseSSAUse() { if (getToken().is(Token::percent_identifier)) { StringRef name = getTokenSpelling().drop_front(); consumeToken(Token::percent_identifier); // TODO: Return this use. (void)name; return ParseSuccess; } // TODO: Parse SSA constants. return emitError("expected SSA operand"); } /// Parse a (possibly empty) list of SSA operands. /// /// ssa-use-list ::= ssa-use (`,` ssa-use)* /// ssa-use-list-opt ::= ssa-use-list? /// ParseResult Parser::parseOptionalSSAUseList(Token::Kind endToken) { // TODO: Build and return this. return parseCommaSeparatedList( endToken, [&]() -> ParseResult { return parseSSAUse(); }); } /// Parse an SSA use with an associated type. /// /// ssa-use-and-type ::= ssa-use `:` type ParseResult Parser::parseSSAUseAndType() { if (parseSSAUse()) return ParseFailure; if (!consumeIf(Token::colon)) return emitError("expected ':' and type for SSA operand"); if (!parseType()) return ParseFailure; return ParseSuccess; } /// Parse a (possibly empty) list of SSA operands with types. /// /// ssa-use-and-type-list ::= ssa-use-and-type (`,` ssa-use-and-type)* /// ParseResult Parser::parseOptionalSSAUseAndTypeList(Token::Kind endToken) { // TODO: Build and return this. return parseCommaSeparatedList( endToken, [&]() -> ParseResult { return parseSSAUseAndType(); }); } //===----------------------------------------------------------------------===// // CFG Functions //===----------------------------------------------------------------------===// namespace { /// This is a specialized parser for CFGFunction's, maintaining the state /// transient to their bodies. class CFGFunctionParser : public Parser { public: CFGFunctionParser(ParserState &state, CFGFunction *function) : Parser(state), function(function), builder(function) {} ParseResult parseFunctionBody(); private: CFGFunction *function; llvm::StringMap> blocksByName; /// This builder intentionally shadows the builder in the base class, with a /// more specific builder type. CFGFuncBuilder builder; /// Get the basic block with the specified name, creating it if it doesn't /// already exist. The location specified is the point of use, which allows /// us to diagnose references to blocks that are not defined precisely. BasicBlock *getBlockNamed(StringRef name, SMLoc loc) { auto &blockAndLoc = blocksByName[name]; if (!blockAndLoc.first) { blockAndLoc.first = new BasicBlock(); blockAndLoc.second = loc; } return blockAndLoc.first; } ParseResult parseBasicBlock(); OperationInst *parseCFGOperation(); TerminatorInst *parseTerminator(); }; } // end anonymous namespace ParseResult CFGFunctionParser::parseFunctionBody() { if (!consumeIf(Token::l_brace)) return emitError("expected '{' in CFG function"); // Make sure we have at least one block. if (getToken().is(Token::r_brace)) return emitError("CFG functions must have at least one basic block"); // Parse the list of blocks. while (!consumeIf(Token::r_brace)) if (parseBasicBlock()) return ParseFailure; // Verify that all referenced blocks were defined. Iteration over a // StringMap isn't determinstic, but this is good enough for our purposes. for (auto &elt : blocksByName) { auto *bb = elt.second.first; if (!bb->getFunction()) return emitError(elt.second.second, "reference to an undefined basic block '" + elt.first() + "'"); } getModule()->functionList.push_back(function); return ParseSuccess; } /// Basic block declaration. /// /// basic-block ::= bb-label instruction* terminator-stmt /// bb-label ::= bb-id bb-arg-list? `:` /// bb-id ::= bare-id /// bb-arg-list ::= `(` ssa-id-and-type-list? `)` /// ParseResult CFGFunctionParser::parseBasicBlock() { SMLoc nameLoc = getToken().getLoc(); auto name = getTokenSpelling(); if (!consumeIf(Token::bare_identifier)) return emitError("expected basic block name"); auto *block = getBlockNamed(name, nameLoc); // If this block has already been parsed, then this is a redefinition with the // same block name. if (block->getFunction()) return emitError(nameLoc, "redefinition of block '" + name.str() + "'"); // Add the block to the function. function->push_back(block); // If an argument list is present, parse it. if (consumeIf(Token::l_paren)) { if (parseOptionalSSAUseAndTypeList(Token::r_paren)) return ParseFailure; // TODO: attach it. } if (!consumeIf(Token::colon)) return emitError("expected ':' after basic block name"); // Set the insertion point to the block we want to insert new operations into. builder.setInsertionPoint(block); // Parse the list of operations that make up the body of the block. while (getToken().isNot(Token::kw_return, Token::kw_br)) { auto loc = getToken().getLoc(); auto *inst = parseCFGOperation(); if (!inst) return ParseFailure; // We just parsed an operation. If it is a recognized one, verify that it // is structurally as we expect. If not, produce an error with a reasonable // source location. if (auto *opInfo = inst->getAbstractOperation(builder.getContext())) if (auto error = opInfo->verifyInvariants(inst)) return emitError(loc, error); } auto *term = parseTerminator(); if (!term) return ParseFailure; return ParseSuccess; } /// Parse the CFG operation. /// /// TODO(clattner): This is a change from the MLIR spec as written, it is an /// experiment that will eliminate "builtin" instructions as a thing. /// /// cfg-operation ::= /// (ssa-id `=`)? string '(' ssa-use-list? ')' attribute-dict? /// `:` function-type /// OperationInst *CFGFunctionParser::parseCFGOperation() { StringRef resultID; if (getToken().is(Token::percent_identifier)) { resultID = getTokenSpelling().drop_front(); consumeToken(); if (!consumeIf(Token::equal)) return (emitError("expected '=' after SSA name"), nullptr); } if (getToken().isNot(Token::string)) return (emitError("expected operation name in quotes"), nullptr); auto name = getToken().getStringValue(); if (name.empty()) return (emitError("empty operation name is invalid"), nullptr); consumeToken(Token::string); if (!consumeIf(Token::l_paren)) return (emitError("expected '(' to start operand list"), nullptr); // Parse the operand list. parseOptionalSSAUseList(Token::r_paren); SmallVector attributes; if (getToken().is(Token::l_brace)) { if (parseAttributeDict(attributes)) return nullptr; } // TODO: Don't drop result name and operand names on the floor. auto nameId = builder.getIdentifier(name); return builder.createOperation(nameId, attributes); } /// Parse the terminator instruction for a basic block. /// /// terminator-stmt ::= `br` bb-id branch-use-list? /// branch-use-list ::= `(` ssa-use-and-type-list? `)` /// terminator-stmt ::= /// `cond_br` ssa-use `,` bb-id branch-use-list? `,` bb-id branch-use-list? /// terminator-stmt ::= `return` ssa-use-and-type-list? /// TerminatorInst *CFGFunctionParser::parseTerminator() { switch (getToken().getKind()) { default: return (emitError("expected terminator at end of basic block"), nullptr); case Token::kw_return: consumeToken(Token::kw_return); return builder.createReturnInst(); case Token::kw_br: { consumeToken(Token::kw_br); auto destBB = getBlockNamed(getTokenSpelling(), getToken().getLoc()); if (!consumeIf(Token::bare_identifier)) return (emitError("expected basic block name"), nullptr); return builder.createBranchInst(destBB); } // TODO: cond_br. } } //===----------------------------------------------------------------------===// // ML Functions //===----------------------------------------------------------------------===// namespace { /// Refined parser for MLFunction bodies. class MLFunctionParser : public Parser { public: MLFunction *function; /// This builder intentionally shadows the builder in the base class, with a /// more specific builder type. // TODO: MLFuncBuilder builder; MLFunctionParser(ParserState &state, MLFunction *function) : Parser(state), function(function) {} ParseResult parseFunctionBody(); Statement *parseStatement(ParentType parent); ForStmt *parseForStmt(ParentType parent); IfStmt *parseIfStmt(ParentType parent); ParseResult parseNestedStatements(NodeStmt *parent); }; } // end anonymous namespace ParseResult MLFunctionParser::parseFunctionBody() { if (!consumeIf(Token::l_brace)) return emitError("expected '{' in ML function"); // Make sure we have at least one statement. if (getToken().is(Token::r_brace)) return emitError("ML function must end with return statement"); // Parse the list of instructions. while (!consumeIf(Token::kw_return)) { auto *stmt = parseStatement(function); if (!stmt) return ParseFailure; function->stmtList.push_back(stmt); } // TODO: parse return statement operands if (!consumeIf(Token::r_brace)) emitError("expected '}' in ML function"); getModule()->functionList.push_back(function); return ParseSuccess; } /// Statement. /// /// ml-stmt ::= instruction | ml-for-stmt | ml-if-stmt /// /// TODO: fix terminology in MLSpec document. ML functions /// contain operation statements, not instructions. /// Statement *MLFunctionParser::parseStatement(ParentType parent) { switch (getToken().getKind()) { default: //TODO: parse OperationStmt return (emitError("expected statement"), nullptr); case Token::kw_for: return parseForStmt(parent); case Token::kw_if: return parseIfStmt(parent); } } /// For statement. /// /// ml-for-stmt ::= `for` ssa-id `=` lower-bound `to` upper-bound /// (`step` integer-literal)? `{` ml-stmt* `}` /// ForStmt *MLFunctionParser::parseForStmt(ParentType parent) { consumeToken(Token::kw_for); //TODO: parse loop header ForStmt *stmt = new ForStmt(parent); if (parseNestedStatements(stmt)) { delete stmt; return nullptr; } return stmt; } /// If statement. /// /// ml-if-head ::= `if` ml-if-cond `{` ml-stmt* `}` /// | ml-if-head `else` `if` ml-if-cond `{` ml-stmt* `}` /// ml-if-stmt ::= ml-if-head /// | ml-if-head `else` `{` ml-stmt* `}` /// IfStmt * MLFunctionParser::parseIfStmt(PointerUnion parent) { consumeToken(Token::kw_if); //TODO: parse condition IfStmt *stmt = new IfStmt(parent); if (parseNestedStatements(stmt)) { delete stmt; return nullptr; } int clauseNum = 0; while (consumeIf(Token::kw_else)) { if (consumeIf(Token::kw_if)) { //TODO: parse condition } ElseClause * clause = new ElseClause(stmt, clauseNum); ++clauseNum; if (parseNestedStatements(clause)) { delete clause; return nullptr; } } return stmt; } /// /// Parse `{` ml-stmt* `}` /// ParseResult MLFunctionParser::parseNestedStatements(NodeStmt *parent) { if (!consumeIf(Token::l_brace)) return emitError("expected '{' before statement list"); if (consumeIf(Token::r_brace)) { // TODO: parse OperationStmt return ParseSuccess; } while (!consumeIf(Token::r_brace)) { auto *stmt = parseStatement(parent); if (!stmt) return ParseFailure; parent->children.push_back(stmt); } return ParseSuccess; } //===----------------------------------------------------------------------===// // Top-level entity parsing. //===----------------------------------------------------------------------===// namespace { /// This parser handles entities that are only valid at the top level of the /// file. class ModuleParser : public Parser { public: explicit ModuleParser(ParserState &state) : Parser(state) {} ParseResult parseModule(); private: ParseResult parseAffineMapDef(); // Functions. ParseResult parseFunctionSignature(StringRef &name, FunctionType *&type); ParseResult parseExtFunc(); ParseResult parseCFGFunc(); ParseResult parseMLFunc(); }; } // end anonymous namespace /// Affine map declaration. /// /// affine-map-def ::= affine-map-id `=` affine-map-inline /// ParseResult ModuleParser::parseAffineMapDef() { assert(getToken().is(Token::hash_identifier)); StringRef affineMapId = getTokenSpelling().drop_front(); // Check for redefinitions. auto *&entry = getState().affineMapDefinitions[affineMapId]; if (entry) return emitError("redefinition of affine map id '" + affineMapId + "'"); consumeToken(Token::hash_identifier); // Parse the '=' if (!consumeIf(Token::equal)) return emitError("expected '=' in affine map outlined definition"); entry = parseAffineMapInline(); if (!entry) return ParseFailure; getModule()->affineMapList.push_back(entry); return ParseSuccess; } /// Parse a function signature, starting with a name and including the parameter /// list. /// /// argument-list ::= type (`,` type)* | /*empty*/ /// function-signature ::= function-id `(` argument-list `)` (`->` type-list)? /// ParseResult ModuleParser::parseFunctionSignature(StringRef &name, FunctionType *&type) { if (getToken().isNot(Token::at_identifier)) return emitError("expected a function identifier like '@foo'"); name = getTokenSpelling().drop_front(); consumeToken(Token::at_identifier); if (getToken().isNot(Token::l_paren)) return emitError("expected '(' in function signature"); SmallVector arguments; if (parseTypeList(arguments)) return ParseFailure; // Parse the return type if present. SmallVector results; if (consumeIf(Token::arrow)) { if (parseTypeList(results)) return ParseFailure; } type = builder.getFunctionType(arguments, results); return ParseSuccess; } /// External function declarations. /// /// ext-func ::= `extfunc` function-signature /// ParseResult ModuleParser::parseExtFunc() { consumeToken(Token::kw_extfunc); StringRef name; FunctionType *type = nullptr; if (parseFunctionSignature(name, type)) return ParseFailure; // Okay, the external function definition was parsed correctly. getModule()->functionList.push_back(new ExtFunction(name, type)); return ParseSuccess; } /// CFG function declarations. /// /// cfg-func ::= `cfgfunc` function-signature `{` basic-block+ `}` /// ParseResult ModuleParser::parseCFGFunc() { consumeToken(Token::kw_cfgfunc); StringRef name; FunctionType *type = nullptr; if (parseFunctionSignature(name, type)) return ParseFailure; // Okay, the CFG function signature was parsed correctly, create the function. auto function = new CFGFunction(name, type); return CFGFunctionParser(getState(), function).parseFunctionBody(); } /// ML function declarations. /// /// ml-func ::= `mlfunc` ml-func-signature `{` ml-stmt* ml-return-stmt `}` /// ParseResult ModuleParser::parseMLFunc() { consumeToken(Token::kw_mlfunc); StringRef name; FunctionType *type = nullptr; // FIXME: Parse ML function signature (args + types) // by passing pointer to SmallVector into parseFunctionSignature if (parseFunctionSignature(name, type)) return ParseFailure; // Okay, the ML function signature was parsed correctly, create the function. auto function = new MLFunction(name, type); return MLFunctionParser(getState(), function).parseFunctionBody(); } /// This is the top-level module parser. ParseResult ModuleParser::parseModule() { while (1) { switch (getToken().getKind()) { default: emitError("expected a top level entity"); return ParseFailure; // If we got to the end of the file, then we're done. case Token::eof: return ParseSuccess; // If we got an error token, then the lexer already emitted an error, just // stop. Someday we could introduce error recovery if there was demand for // it. case Token::error: return ParseFailure; case Token::hash_identifier: if (parseAffineMapDef()) return ParseFailure; break; case Token::kw_extfunc: if (parseExtFunc()) return ParseFailure; break; case Token::kw_cfgfunc: if (parseCFGFunc()) return ParseFailure; break; case Token::kw_mlfunc: if (parseMLFunc()) return ParseFailure; break; // TODO: affine entity declarations, etc. } } } //===----------------------------------------------------------------------===// void mlir::defaultErrorReporter(const llvm::SMDiagnostic &error) { const auto &sourceMgr = *error.getSourceMgr(); sourceMgr.PrintMessage(error.getLoc(), error.getKind(), error.getMessage()); } /// This parses the file specified by the indicated SourceMgr and returns an /// MLIR module if it was valid. If not, it emits diagnostics and returns null. Module *mlir::parseSourceFile(llvm::SourceMgr &sourceMgr, MLIRContext *context, SMDiagnosticHandlerTy errorReporter) { // This is the result module we are parsing into. std::unique_ptr module(new Module(context)); ParserState state(sourceMgr, module.get(), errorReporter ? errorReporter : defaultErrorReporter); if (ModuleParser(state).parseModule()) return nullptr; // Make sure the parse module has no other structural problems detected by the // verifier. module->verify(); return module.release(); }