//===- GPUTransformOps.cpp - Implementation of GPU transform ops ----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "mlir/Dialect/GPU/TransformOps/GPUTransformOps.h" #include "mlir/Conversion/GPUCommon/GPUCommonPass.h" #include "mlir/Conversion/GPUToNVVM/GPUToNVVMPass.h" #include "mlir/Conversion/LLVMCommon/TypeConverter.h" #include "mlir/Dialect/Affine/IR/AffineOps.h" #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Dialect/GPU/IR/GPUDialect.h" #include "mlir/Dialect/GPU/TransformOps/Utils.h" #include "mlir/Dialect/GPU/Transforms/Passes.h" #include "mlir/Dialect/LLVMIR/NVVMDialect.h" #include "mlir/Dialect/MemRef/IR/MemRef.h" #include "mlir/Dialect/SCF/IR/DeviceMappingInterface.h" #include "mlir/Dialect/SCF/IR/SCF.h" #include "mlir/Dialect/Transform/IR/TransformDialect.h" #include "mlir/Dialect/Transform/IR/TransformInterfaces.h" #include "mlir/Dialect/Utils/IndexingUtils.h" #include "mlir/Dialect/Vector/IR/VectorOps.h" #include "mlir/Dialect/Vector/Transforms/VectorTransforms.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/IRMapping.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OpDefinition.h" #include "mlir/IR/Visitors.h" #include "mlir/Support/LLVM.h" #include "mlir/Transforms/DialectConversion.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/TypeSwitch.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include using namespace mlir; using namespace mlir::gpu; using namespace mlir::transform; using namespace mlir::transform::gpu; #define DEBUG_TYPE "gpu-transforms" #define DEBUG_TYPE_ALIAS "gpu-transforms-alias" #define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ") #define LDBG(X) LLVM_DEBUG(DBGS() << X << "\n") #define DBGS_ALIAS() (llvm::dbgs() << '[' << DEBUG_TYPE_ALIAS << "] ") //===----------------------------------------------------------------------===// // Apply...ConversionPatternsOp //===----------------------------------------------------------------------===// void transform::ApplyGPUToNVVMConversionPatternsOp::populatePatterns( TypeConverter &typeConverter, RewritePatternSet &patterns) { auto &llvmTypeConverter = static_cast(typeConverter); // NVVM uses alloca in the default address space to represent private // memory allocations, so drop private annotations. NVVM uses address // space 3 for shared memory. NVVM uses the default address space to // represent global memory. // Used in populateGpuToNVVMConversionPatternsso attaching here for now. // TODO: We should have a single to_nvvm_type_converter. populateGpuMemorySpaceAttributeConversions( llvmTypeConverter, [](AddressSpace space) -> unsigned { switch (space) { case AddressSpace::Global: return static_cast( NVVM::NVVMMemorySpace::kGlobalMemorySpace); case AddressSpace::Workgroup: return static_cast( NVVM::NVVMMemorySpace::kSharedMemorySpace); case AddressSpace::Private: return 0; } llvm_unreachable("unknown address space enum value"); return 0; }); // Used in GPUToNVVM/WmmaOpsToNvvm.cpp so attaching here for now. // TODO: We should have a single to_nvvm_type_converter. llvmTypeConverter.addConversion( [&](MMAMatrixType type) -> Type { return convertMMAToLLVMType(type); }); populateGpuToNVVMConversionPatterns(llvmTypeConverter, patterns); } LogicalResult transform::ApplyGPUToNVVMConversionPatternsOp::verifyTypeConverter( transform::TypeConverterBuilderOpInterface builder) { if (builder.getTypeConverterType() != "LLVMTypeConverter") return emitOpError("expected LLVMTypeConverter"); return success(); } void transform::ApplyGPUWwmaToNVVMConversionPatternsOp::populatePatterns( TypeConverter &typeConverter, RewritePatternSet &patterns) { auto &llvmTypeConverter = static_cast(typeConverter); populateGpuWMMAToNVVMConversionPatterns(llvmTypeConverter, patterns); } LogicalResult transform::ApplyGPUWwmaToNVVMConversionPatternsOp::verifyTypeConverter( transform::TypeConverterBuilderOpInterface builder) { if (builder.getTypeConverterType() != "LLVMTypeConverter") return emitOpError("expected LLVMTypeConverter"); return success(); } void transform::ApplyGPUSubgroupReduceToNVVMConversionPatternsOp:: populatePatterns(TypeConverter &typeConverter, RewritePatternSet &patterns) { auto &llvmTypeConverter = static_cast(typeConverter); populateGpuSubgroupReduceOpLoweringPattern(llvmTypeConverter, patterns); } LogicalResult transform::ApplyGPUSubgroupReduceToNVVMConversionPatternsOp:: verifyTypeConverter(transform::TypeConverterBuilderOpInterface builder) { if (builder.getTypeConverterType() != "LLVMTypeConverter") return emitOpError("expected LLVMTypeConverter"); return success(); } //===----------------------------------------------------------------------===// // Apply...PatternsOp //===----------------------------------------------------------------------===//s void ApplyGPURewritePatternsOp::populatePatterns(RewritePatternSet &patterns) { populateGpuRewritePatterns(patterns); } //===----------------------------------------------------------------------===// // ApplyUnrollVectorsSubgroupMmaOp //===----------------------------------------------------------------------===// /// Pick an unrolling order that will allow tensorcore operation to reuse LHS /// register. static std::optional> gpuMmaUnrollOrder(vector::ContractionOp contract) { SmallVector order; // First make reduction the outer dimensions. for (auto [index, iter] : llvm::enumerate(contract.getIteratorTypes())) { if (vector::isReductionIterator(iter)) { order.push_back(index); } } llvm::SmallDenseSet dims; for (AffineExpr expr : contract.getIndexingMapsArray()[0].getResults()) { dims.insert(expr.cast().getPosition()); } // Then parallel dimensions that are part of Lhs as we want to re-use Lhs. for (auto [index, iter] : llvm::enumerate(contract.getIteratorTypes())) { if (vector::isParallelIterator(iter) && dims.count(index)) { order.push_back(index); } } // Then the remaining parallel loops. for (auto [index, iter] : llvm::enumerate(contract.getIteratorTypes())) { if (vector::isParallelIterator(iter) && !dims.count(index)) { order.push_back(index); } } return order; } /// Returns the target vector size for the target operation based on the native /// vector size specified with `m`, `n`, and `k`. static std::optional> getSubgroupMmaNativeVectorSize(Operation *op, int64_t m, int64_t n, int64_t k) { if (auto contract = dyn_cast(op)) { int64_t contractRank = contract.getIteratorTypes().size(); if (contractRank < 3) return std::nullopt; SmallVector nativeSize(contractRank - 3, 1); nativeSize.append({m, n, k}); return nativeSize; } if (auto writeOp = dyn_cast(op)) { int64_t writeRank = writeOp.getVectorType().getRank(); if (writeRank < 2) return std::nullopt; SmallVector nativeSize(writeRank - 2, 1); nativeSize.append({m, n}); return nativeSize; } if (auto readOp = dyn_cast(op)) { // Transfer read ops may need different shapes based on how they are being // used. For simplicity just match the shape used by the extract strided op. VectorType sliceType; for (Operation *users : op->getUsers()) { auto extract = dyn_cast(users); if (!extract) return std::nullopt; auto vecType = extract.getResult().getType().cast(); if (sliceType && sliceType != vecType) return std::nullopt; sliceType = vecType; } return llvm::to_vector(sliceType.getShape()); } if ((OpTrait::hasElementwiseMappableTraits(op) && op->getNumResults() == 1)) { if (auto vecType = op->getResultTypes()[0].dyn_cast()) { // TODO: The condition for unrolling elementwise should be restricted // only to operations that need unrolling (connected to the contract). if (vecType.getRank() < 2) return std::nullopt; // First check whether there is a slice to infer the shape from. This is // required for cases where the accumulator type differs from the input // types, in which case we will see an `arith.ext_` between the contract // and transfer_read which needs to be unrolled. VectorType sliceType; for (Operation *users : op->getUsers()) { auto extract = dyn_cast(users); if (!extract) return std::nullopt; auto vecType = extract.getResult().getType().cast(); if (sliceType && sliceType != vecType) return std::nullopt; sliceType = vecType; } if (sliceType) return llvm::to_vector(sliceType.getShape()); // Else unroll for trailing elementwise. SmallVector nativeSize(vecType.getRank() - 2, 1); // Map elementwise ops to the output shape. nativeSize.append({m, n}); return nativeSize; } } return std::nullopt; } void transform::ApplyUnrollVectorsSubgroupMmaOp::populatePatterns( RewritePatternSet &patterns) { auto unrollOrder = [](Operation *op) -> std::optional> { auto contract = dyn_cast(op); if (!contract) return std::nullopt; return gpuMmaUnrollOrder(contract); }; int64_t m = getM(); int64_t n = getN(); int64_t k = getK(); auto nativeShapeFn = [m, n, k](Operation *op) -> std::optional> { return getSubgroupMmaNativeVectorSize(op, m, n, k); }; vector::populateVectorUnrollPatterns( patterns, vector::UnrollVectorOptions() .setNativeShapeFn(nativeShapeFn) .setUnrollTraversalOrderFn(unrollOrder)); } //===----------------------------------------------------------------------===// // EliminateBarriersOp //===----------------------------------------------------------------------===// // The functions below provide interface-like verification, but are too specific // to barrier elimination to become interfaces. /// Implement the MemoryEffectsOpInterface in the suitable way. static bool isKnownNoEffectsOpWithoutInterface(Operation *op) { // memref::AssumeAlignment is conceptually pure, but marking it as such would // make DCE immediately remove it. return isa(op); } /// Returns `true` if the op is defines the parallel region that is subject to /// barrier synchronization. static bool isParallelRegionBoundary(Operation *op) { if (op->hasAttr("__parallel_region_boundary_for_test")) return true; return isa(op); } /// Returns `true` if the op behaves like a sequential loop, e.g., the control /// flow "wraps around" from the end of the body region back to its start. static bool isSequentialLoopLike(Operation *op) { return isa(op); } /// Returns `true` if the regions of the op are guaranteed to be executed at /// most once. Thus, if an operation in one of the nested regions of `op` is /// executed than so are all the other operations in this region. static bool hasSingleExecutionBody(Operation *op) { return isa(op); } /// Returns `true` if the operation is known to produce a pointer-like object /// distinct from any other object produced by a similar operation. For example, /// an allocation produces such an object. static bool producesDistinctBase(Operation *op) { return isa_and_nonnull(op); } /// Populates `effects` with all memory effects without associating them to a /// specific value. static void addAllValuelessEffects( SmallVectorImpl &effects) { effects.emplace_back(MemoryEffects::Effect::get()); effects.emplace_back(MemoryEffects::Effect::get()); effects.emplace_back(MemoryEffects::Effect::get()); effects.emplace_back(MemoryEffects::Effect::get()); } /// Collect the memory effects of the given op in 'effects'. Returns 'true' if /// it could extract the effect information from the op, otherwise returns /// 'false' and conservatively populates the list with all possible effects /// associated with no particular value or symbol. static bool collectEffects(Operation *op, SmallVectorImpl &effects, bool ignoreBarriers = true) { // Skip over barriers to avoid infinite recursion (those barriers would ask // this barrier again). if (ignoreBarriers && isa(op)) return true; // Skip over ops that we know have no effects. if (isKnownNoEffectsOpWithoutInterface(op)) return true; // Collect effect instances the operation. Note that the implementation of // getEffects erases all effect instances that have the type other than the // template parameter so we collect them first in a local buffer and then // copy. if (auto iface = dyn_cast(op)) { SmallVector localEffects; iface.getEffects(localEffects); llvm::append_range(effects, localEffects); return true; } if (op->hasTrait()) { for (auto ®ion : op->getRegions()) { for (auto &block : region) { for (auto &innerOp : block) if (!collectEffects(&innerOp, effects, ignoreBarriers)) return false; } } return true; } // We need to be conservative here in case the op doesn't have the interface // and assume it can have any possible effect. addAllValuelessEffects(effects); return false; } /// Collects memory effects from operations that may be executed before `op` in /// a trivial structured control flow, e.g., without branches. Stops at the /// parallel region boundary or at the barrier operation if `stopAtBarrier` is /// set. Returns `true` if the memory effects added to `effects` are exact, /// `false` if they are a conservative over-approximation. The latter means that /// `effects` contain instances not associated with a specific value. static bool getEffectsBefore(Operation *op, SmallVectorImpl &effects, bool stopAtBarrier) { if (!op->getBlock()) return true; // If there is a non-structured control flow, bail. Region *region = op->getBlock()->getParent(); if (region && !llvm::hasSingleElement(region->getBlocks())) { addAllValuelessEffects(effects); return false; } // Collect all effects before the op. if (op != &op->getBlock()->front()) { for (Operation *it = op->getPrevNode(); it != nullptr; it = it->getPrevNode()) { if (isa(it)) { if (stopAtBarrier) return true; else continue; } if (!collectEffects(it, effects)) return false; } } // Stop if reached the parallel region boundary. if (isParallelRegionBoundary(op->getParentOp())) return true; // Otherwise, keep collecting above the parent operation. if (!getEffectsBefore(op->getParentOp(), effects, stopAtBarrier)) return false; // If the op is loop-like, collect effects from the trailing operations until // we hit a barrier because they can executed before the current operation by // the previous iteration of this loop. For example, in the following loop // // for i = ... { // op1 // ... // barrier // op2 // } // // the operation `op2` at iteration `i` is known to be executed before the // operation `op1` at iteration `i+1` and the side effects must be ordered // appropriately. if (isSequentialLoopLike(op->getParentOp())) { // Assuming loop terminators have no side effects. return getEffectsBefore(op->getBlock()->getTerminator(), effects, /*stopAtBarrier=*/true); } // If the parent operation is not guaranteed to execute its (single-block) // region once, walk the block. bool conservative = false; if (!hasSingleExecutionBody(op->getParentOp())) op->getParentOp()->walk([&](Operation *in) { if (conservative) return WalkResult::interrupt(); if (!collectEffects(in, effects)) { conservative = true; return WalkResult::interrupt(); } return WalkResult::advance(); }); return !conservative; } /// Collects memory effects from operations that may be executed after `op` in /// a trivial structured control flow, e.g., without branches. Stops at the /// parallel region boundary or at the barrier operation if `stopAtBarrier` is /// set. Returns `true` if the memory effects added to `effects` are exact, /// `false` if they are a conservative over-approximation. The latter means that /// `effects` contain instances not associated with a specific value. static bool getEffectsAfter(Operation *op, SmallVectorImpl &effects, bool stopAtBarrier) { if (!op->getBlock()) return true; // If there is a non-structured control flow, bail. Region *region = op->getBlock()->getParent(); if (region && !llvm::hasSingleElement(region->getBlocks())) { addAllValuelessEffects(effects); return false; } // Collect all effects after the op. if (op != &op->getBlock()->back()) for (Operation *it = op->getNextNode(); it != nullptr; it = it->getNextNode()) { if (isa(it)) { if (stopAtBarrier) return true; continue; } if (!collectEffects(it, effects)) return false; } // Stop if reached the parallel region boundary. if (isParallelRegionBoundary(op->getParentOp())) return true; // Otherwise, keep collecting below the parent operation. if (!getEffectsAfter(op->getParentOp(), effects, stopAtBarrier)) return false; // If the op is loop-like, collect effects from the leading operations until // we hit a barrier because they can executed after the current operation by // the next iteration of this loop. For example, in the following loop // // for i = ... { // op1 // ... // barrier // op2 // } // // the operation `op1` at iteration `i` is known to be executed after the // operation `op2` at iteration `i-1` and the side effects must be ordered // appropriately. if (isSequentialLoopLike(op->getParentOp())) { if (isa(op->getBlock()->front())) return true; bool exact = collectEffects(&op->getBlock()->front(), effects); return getEffectsAfter(&op->getBlock()->front(), effects, /*stopAtBarrier=*/true) && exact; } // If the parent operation is not guaranteed to execute its (single-block) // region once, walk the block. bool conservative = false; if (!hasSingleExecutionBody(op->getParentOp())) op->getParentOp()->walk([&](Operation *in) { if (conservative) return WalkResult::interrupt(); if (!collectEffects(in, effects)) { conservative = true; return WalkResult::interrupt(); } return WalkResult::advance(); }); return !conservative; } /// Looks through known "view-like" ops to find the base memref. static Value getBase(Value v) { while (true) { Operation *definingOp = v.getDefiningOp(); if (!definingOp) break; bool shouldContinue = TypeSwitch(v.getDefiningOp()) .Case( [&](auto op) { v = op.getSource(); return true; }) .Case([&](auto op) { v = op.getIn(); return true; }) .Case([&](auto op) { v = op.getSrc(); return true; }) .Default([](Operation *) { return false; }); if (!shouldContinue) break; } return v; } /// Returns `true` if the value is defined as a function argument. static bool isFunctionArgument(Value v) { auto arg = dyn_cast(v); return arg && isa(arg.getOwner()->getParentOp()); } /// Returns the operand that the operation "propagates" through it for capture /// purposes. That is, if the value produced by this operation is captured, then /// so is the returned value. static Value propagatesCapture(Operation *op) { return llvm::TypeSwitch(op) .Case( [](ViewLikeOpInterface viewLike) { return viewLike.getViewSource(); }) .Case([](CastOpInterface castLike) { return castLike->getOperand(0); }) .Case([](memref::TransposeOp transpose) { return transpose.getIn(); }) .Case( [](auto op) { return op.getSrc(); }) .Default([](Operation *) { return Value(); }); } /// Returns `true` if the given operation is known to capture the given value, /// `false` if it is known not to capture the given value, `nullopt` if neither /// is known. static std::optional getKnownCapturingStatus(Operation *op, Value v) { return llvm::TypeSwitch>(op) // Store-like operations don't capture the destination, but do capture // the value. .Case( [&](auto op) { return op.getValue() == v; }) .Case( [&](auto op) { return op.getValueToStore() == v; }) // These operations are known not to capture. .Case([](memref::DeallocOp) { return false; }) // By default, we don't know anything. .Default([](Operation *) { return std::nullopt; }); } /// Returns `true` if the value may be captured by any of its users, i.e., if /// the user may be storing this value into memory. This makes aliasing analysis /// more conservative as it cannot assume the pointer-like value is only passed /// around through SSA use-def. static bool maybeCaptured(Value v) { SmallVector todo = {v}; while (!todo.empty()) { Value v = todo.pop_back_val(); for (Operation *user : v.getUsers()) { // A user that is known to only read cannot capture. auto iface = dyn_cast(user); if (iface) { SmallVector effects; iface.getEffects(effects); if (llvm::all_of(effects, [](const MemoryEffects::EffectInstance &effect) { return isa(effect.getEffect()); })) { continue; } } // When an operation is known to create an alias, consider if the // source is captured as well. if (Value v = propagatesCapture(user)) { todo.push_back(v); continue; } std::optional knownCaptureStatus = getKnownCapturingStatus(user, v); if (!knownCaptureStatus || *knownCaptureStatus) return true; } } return false; } /// Returns true if two values may be referencing aliasing memory. This is a /// rather naive and conservative analysis. Values defined by different /// allocation-like operations as well as values derived from those by casts and /// views cannot alias each other. Similarly, values defined by allocations /// inside a function cannot alias function arguments. Global values cannot /// alias each other or local allocations. Values that are captured, i.e. /// themselves potentially stored in memory, are considered as aliasing with /// everything. This seems sufficient to achieve barrier removal in structured /// control flow, more complex cases would require a proper dataflow analysis. static bool mayAlias(Value first, Value second) { DEBUG_WITH_TYPE(DEBUG_TYPE_ALIAS, { DBGS_ALIAS() << "checking aliasing between "; DBGS_ALIAS() << first << "\n"; DBGS_ALIAS() << " and "; DBGS_ALIAS() << second << "\n"; }); first = getBase(first); second = getBase(second); DEBUG_WITH_TYPE(DEBUG_TYPE_ALIAS, { DBGS_ALIAS() << "base "; DBGS_ALIAS() << first << "\n"; DBGS_ALIAS() << " and "; DBGS_ALIAS() << second << "\n"; }); // Values derived from the same base memref do alias (unless we do a more // advanced analysis to prove non-overlapping accesses). if (first == second) { DEBUG_WITH_TYPE(DEBUG_TYPE_ALIAS, DBGS_ALIAS() << "-> do alias!\n"); return true; } // Different globals cannot alias. if (auto globFirst = first.getDefiningOp()) { if (auto globSecond = second.getDefiningOp()) { return globFirst.getNameAttr() == globSecond.getNameAttr(); } } // Two function arguments marked as noalias do not alias. auto isNoaliasFuncArgument = [](Value value) { auto bbArg = dyn_cast(value); if (!bbArg) return false; auto iface = dyn_cast(bbArg.getOwner()->getParentOp()); if (!iface) return false; // TODO: we need a way to not depend on the LLVM dialect here. return iface.getArgAttr(bbArg.getArgNumber(), "llvm.noalias") != nullptr; }; if (isNoaliasFuncArgument(first) && isNoaliasFuncArgument(second)) return false; bool isDistinct[] = {producesDistinctBase(first.getDefiningOp()), producesDistinctBase(second.getDefiningOp())}; bool isGlobal[] = {first.getDefiningOp() != nullptr, second.getDefiningOp() != nullptr}; // Non-equivalent distinct bases and globals cannot alias. At this point, we // have already filtered out based on values being equal and global name being // equal. if ((isDistinct[0] || isGlobal[0]) && (isDistinct[1] || isGlobal[1])) return false; bool isArg[] = {isFunctionArgument(first), isFunctionArgument(second)}; // Distinct bases (allocations) cannot have been passed as an argument. if ((isDistinct[0] && isArg[1]) || (isDistinct[1] && isArg[0])) return false; // Non-captured base distinct values cannot conflict with another base value. if (isDistinct[0] && !maybeCaptured(first)) return false; if (isDistinct[1] && !maybeCaptured(second)) return false; // Otherwise, conservatively assume aliasing. DEBUG_WITH_TYPE(DEBUG_TYPE_ALIAS, DBGS_ALIAS() << "-> may alias!\n"); return true; } /// Returns `true` if the effect may be affecting memory aliasing the value. If /// the effect is not associated with any value, it is assumed to affect all /// memory and therefore aliases with everything. static bool mayAlias(MemoryEffects::EffectInstance a, Value v2) { if (Value v = a.getValue()) { return mayAlias(v, v2); } return true; } /// Returns `true` if the two effects may be affecting aliasing memory. If /// an effect is not associated with any value, it is assumed to affect all /// memory and therefore aliases with everything. Effects on different resources /// cannot alias. static bool mayAlias(MemoryEffects::EffectInstance a, MemoryEffects::EffectInstance b) { if (a.getResource()->getResourceID() != b.getResource()->getResourceID()) return false; if (Value v2 = b.getValue()) { return mayAlias(a, v2); } else if (Value v = a.getValue()) { return mayAlias(b, v); } return true; } /// Returns `true` if any of the "before" effect instances has a conflict with /// any "after" instance for the purpose of barrier elimination. The effects are /// supposed to be limited to a barrier synchronization scope. A conflict exists /// if effects instances affect aliasing memory locations and at least on of /// then as a write. As an exception, if the non-write effect is an allocation /// effect, there is no conflict since we are only expected to see the /// allocation happening in the same thread and it cannot be accessed from /// another thread without capture (which we do handle in alias analysis). static bool haveConflictingEffects(ArrayRef beforeEffects, ArrayRef afterEffects) { for (const MemoryEffects::EffectInstance &before : beforeEffects) { for (const MemoryEffects::EffectInstance &after : afterEffects) { // If cannot alias, definitely no conflict. if (!mayAlias(before, after)) continue; // Read/read is not a conflict. if (isa(before.getEffect()) && isa(after.getEffect())) { continue; } // Allocate/* is not a conflict since the allocation happens within the // thread context. // TODO: This is not the case for */Free unless the allocation happened in // the thread context, which we could also check for. if (isa(before.getEffect()) || isa(after.getEffect())) { continue; } // In the particular case that the before effect is a free, we only have 2 // possibilities: // 1. either the program is well-formed and there must be an interleaved // alloc that must limit the scope of effect lookback and we can // safely ignore the free -> read / free -> write and free -> free // conflicts. // 2. either the program is ill-formed and we are in undefined behavior // territory. if (isa(before.getEffect())) continue; // Other kinds of effects create a conflict, e.g. read-after-write. LLVM_DEBUG( DBGS() << "found a conflict between (before): " << before.getValue() << " read:" << isa(before.getEffect()) << " write:" << isa(before.getEffect()) << " alloc:" << isa(before.getEffect()) << " free:" << isa(before.getEffect()) << "\n"); LLVM_DEBUG( DBGS() << "and (after): " << after.getValue() << " read:" << isa(after.getEffect()) << " write:" << isa(after.getEffect()) << " alloc:" << isa(after.getEffect()) << " free:" << isa(after.getEffect()) << "\n"); return true; } } return false; } namespace { /// Barrier elimination pattern. If a barrier does not enforce any conflicting /// pair of memory effects, including a pair that is enforced by another /// barrier, it is unnecessary and can be removed. Adapted from /// "High-Performance GPU-to-CPU Transpilation and Optimization via High-Level /// Parallel Constructs" by Moses, Ivanov, Domke, Endo, Doerfert, and Zinenko in /// PPoPP 2023 and implementation in Polygeist. class BarrierElimination final : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(BarrierOp barrier, PatternRewriter &rewriter) const override { LLVM_DEBUG(DBGS() << "checking the necessity of: " << barrier << " " << barrier.getLoc() << "\n"); SmallVector beforeEffects; getEffectsBefore(barrier, beforeEffects, /*stopAtBarrier=*/true); SmallVector afterEffects; getEffectsAfter(barrier, afterEffects, /*stopAtBarrier=*/true); if (!haveConflictingEffects(beforeEffects, afterEffects)) { LLVM_DEBUG(DBGS() << "the surrounding barriers are sufficient, removing " << barrier << "\n"); rewriter.eraseOp(barrier); return success(); } LLVM_DEBUG(DBGS() << "barrier is necessary: " << barrier << " " << barrier.getLoc() << "\n"); return failure(); } }; } // namespace void EliminateBarriersOp::populatePatterns(RewritePatternSet &patterns) { patterns.insert(getContext()); } //===----------------------------------------------------------------------===// // Block and thread mapping utilities. //===----------------------------------------------------------------------===// namespace { /// Local types used for mapping verification. struct MappingKind {}; struct BlockMappingKind : MappingKind {}; struct ThreadMappingKind : MappingKind {}; } // namespace static DiagnosedSilenceableFailure definiteFailureHelper(std::optional transformOp, Operation *target, const Twine &message) { if (transformOp.has_value()) return transformOp->emitDefiniteFailure() << message; return emitDefiniteFailure(target, message); } /// Check if given mapping attributes are one of the desired attributes template static DiagnosedSilenceableFailure checkMappingAttributeTypes(std::optional transformOp, scf::ForallOp forallOp) { if (!forallOp.getMapping().has_value()) { return definiteFailureHelper(transformOp, forallOp, "scf.forall op requires a mapping attribute"); } bool hasBlockMapping = llvm::any_of(forallOp.getMapping().value(), [](Attribute attr) { return isa(attr); }); bool hasWarpgroupMapping = llvm::any_of(forallOp.getMapping().value(), [](Attribute attr) { return isa(attr); }); bool hasWarpMapping = llvm::any_of(forallOp.getMapping().value(), [](Attribute attr) { return isa(attr); }); bool hasThreadMapping = llvm::any_of(forallOp.getMapping().value(), [](Attribute attr) { return isa(attr); }); int64_t countMappingTypes = 0; countMappingTypes += hasBlockMapping ? 1 : 0; countMappingTypes += hasWarpgroupMapping ? 1 : 0; countMappingTypes += hasWarpMapping ? 1 : 0; countMappingTypes += hasThreadMapping ? 1 : 0; if (countMappingTypes > 1) { return definiteFailureHelper( transformOp, forallOp, "cannot mix different mapping types, use nesting"); } if (std::is_same::value && !hasBlockMapping) { return definiteFailureHelper( transformOp, forallOp, "scf.forall op requires a mapping attribute of kind 'block'"); } if (std::is_same::value && !hasThreadMapping && !hasWarpMapping && !hasWarpgroupMapping) { return definiteFailureHelper(transformOp, forallOp, "scf.forall op requires a mapping attribute " "of kind 'thread' or 'warp'"); } DenseSet seen; for (Attribute map : forallOp.getMapping()->getValue()) { if (seen.contains(map)) { return definiteFailureHelper( transformOp, forallOp, "duplicate attribute, cannot map different loops " "to the same mapping id"); } seen.insert(map); } auto isLinear = [](Attribute a) { return cast(a).isLinearMapping(); }; if (llvm::any_of(forallOp.getMapping()->getValue(), isLinear) && !llvm::all_of(forallOp.getMapping()->getValue(), isLinear)) { return definiteFailureHelper( transformOp, forallOp, "cannot mix linear and non-linear mapping modes"); } return DiagnosedSilenceableFailure::success(); } template static DiagnosedSilenceableFailure verifyGpuMapping(std::optional transformOp, scf::ForallOp forallOp) { // Check the types of the mapping attributes match. DiagnosedSilenceableFailure typeRes = checkMappingAttributeTypes(transformOp, forallOp); if (!typeRes.succeeded()) return typeRes; // Perform other non-types verifications. if (!forallOp.isNormalized()) return definiteFailureHelper(transformOp, forallOp, "unsupported non-normalized loops"); if (forallOp.getNumResults() > 0) return definiteFailureHelper(transformOp, forallOp, "only bufferized scf.forall can be mapped"); bool useLinearMapping = cast( forallOp.getMapping()->getValue().front()) .isLinearMapping(); // TODO: This would be more natural with support for Optional // in GPUDeviceMappingAttr. int64_t maxNumMappingsSupported = useLinearMapping ? (getMaxEnumValForMappingId() - static_cast(MappingId::DimZ)) : 3; if (forallOp.getRank() > maxNumMappingsSupported) { return definiteFailureHelper(transformOp, forallOp, "scf.forall with rank > ") << maxNumMappingsSupported << " does not lower for the specified mapping attribute type"; } auto numParallelIterations = getConstantIntValues(forallOp.getMixedUpperBound()); if (!forallOp.isNormalized() || !numParallelIterations.has_value()) { return definiteFailureHelper( transformOp, forallOp, "requires statically sized, normalized forall op"); } return DiagnosedSilenceableFailure::success(); } /// Struct to return the result of the rewrite of a forall operation. struct ForallRewriteResult { SmallVector mappingSizes; SmallVector mappingIds; }; /// Helper to replace ids of dimensions known to be 1 by 0 to simplify the IR. template static void replaceUnitMappingIdsHelper(RewriterBase &rewriter, Location loc, OperationOrBlock *parent, Value replacement, ArrayRef availableMappingSizes) { parent->walk([&](OpTy idOp) { if (availableMappingSizes[static_cast(idOp.getDimension())] == 1) rewriter.replaceAllUsesWith(idOp.getResult(), replacement); }); } static DiagnosedSilenceableFailure rewriteOneForallCommonImpl( RewriterBase &rewriter, std::optional transformOp, scf::ForallOp forallOp, ArrayRef availableMappingSizes, ForallRewriteResult &result, const GpuIdBuilder &gpuIdBuilder) { LDBG("--start rewriteOneForallCommonImpl"); // Step 1. Complete the mapping to a full mapping (with 1s) if necessary. auto numParallelIterations = getConstantIntValues(forallOp.getMixedUpperBound()); assert(forallOp.isNormalized() && numParallelIterations.has_value() && "requires statically sized, normalized forall op"); SmallVector tmpMappingSizes = numParallelIterations.value(); SetVector forallMappingAttrs; forallMappingAttrs.insert(forallOp.getMapping()->getValue().begin(), forallOp.getMapping()->getValue().end()); auto comparator = [](Attribute a, Attribute b) -> bool { return cast(a).getMappingId() < cast(b).getMappingId(); }; // Step 1.b. In the linear case, compute the max mapping to avoid needlessly // mapping all dimensions. In the 3-D mapping case we need to map all // dimensions. DeviceMappingAttrInterface maxMapping = cast(*std::max_element( forallMappingAttrs.begin(), forallMappingAttrs.end(), comparator)); DeviceMappingAttrInterface maxLinearMapping; if (maxMapping.isLinearMapping()) maxLinearMapping = maxMapping; for (auto attr : gpuIdBuilder.mappingAttributes) { // If attr overflows, just skip. if (maxLinearMapping && comparator(maxLinearMapping, attr)) continue; // Try to insert. If element was already present, just continue. if (!forallMappingAttrs.insert(attr)) continue; // Otherwise, we have a new insertion without a size -> use size 1. tmpMappingSizes.push_back(1); } LLVM_DEBUG( llvm::interleaveComma( tmpMappingSizes, DBGS() << "----tmpMappingSizes extracted from scf.forall op: "); llvm::dbgs() << "\n"); // Step 2. sort the values by the corresponding DeviceMappingAttrInterface. SmallVector forallMappingSizes = getValuesSortedByKey( forallMappingAttrs.getArrayRef(), tmpMappingSizes, comparator); LLVM_DEBUG(llvm::interleaveComma(forallMappingSizes, DBGS() << "----forallMappingSizes: "); llvm::dbgs() << "\n"; llvm::interleaveComma( forallMappingAttrs, DBGS() << "----forallMappingAttrs: "); llvm::dbgs() << "\n"); // Step 3. Generate the mappingIdOps using the provided generator. Location loc = forallOp.getLoc(); OpBuilder::InsertionGuard guard(rewriter); rewriter.setInsertionPoint(forallOp); SmallVector originalBasis(availableMappingSizes); bool originalBasisWasProvided = !originalBasis.empty(); if (!originalBasisWasProvided) { originalBasis = forallMappingSizes; while (originalBasis.size() < 3) originalBasis.push_back(1); } IdBuilderResult builderResult = gpuIdBuilder.idBuilder(rewriter, loc, forallMappingSizes, originalBasis); // Step 4. Map the induction variables to the mappingIdOps, this may involve // a permutation. SmallVector mappingIdOps = builderResult.mappingIdOps; IRMapping bvm; for (auto [iv, dim] : llvm::zip_equal( forallOp.getInductionVars(), forallMappingAttrs.getArrayRef().take_front(forallOp.getRank()))) { auto mappingAttr = cast(dim); Value peIdOp = mappingIdOps[mappingAttr.getRelativeIndex()]; bvm.map(iv, peIdOp); } // Step 5. If the originalBasis is already known, create conditionals to // predicate the region. Otherwise, the current forall determines the // originalBasis and no predication occurs. Value predicate; if (originalBasisWasProvided) { SmallVector activeMappingSizes = builderResult.activeMappingSizes; SmallVector availableMappingSizes = builderResult.availableMappingSizes; SmallVector activeIdOps = builderResult.activeIdOps; // clang-format off LLVM_DEBUG( llvm::interleaveComma( activeMappingSizes, DBGS() << "----activeMappingSizes: "); llvm::dbgs() << "\n"; llvm::interleaveComma( availableMappingSizes, DBGS() << "----availableMappingSizes: "); llvm::dbgs() << "\n"; llvm::interleaveComma(activeIdOps, DBGS() << "----activeIdOps: "); llvm::dbgs() << "\n"); // clang-format on for (auto [activeId, activeMappingSize, availableMappingSize] : llvm::zip_equal(activeIdOps, activeMappingSizes, availableMappingSizes)) { if (activeMappingSize > availableMappingSize) { return definiteFailureHelper( transformOp, forallOp, "Trying to map to fewer GPU threads than loop iterations but " "overprovisioning is not yet supported. " "Try additional tiling of the before mapping or map to more " "threads."); } if (activeMappingSize == availableMappingSize) continue; Value idx = rewriter.create(loc, activeMappingSize); Value tmpPredicate = rewriter.create( loc, arith::CmpIPredicate::ult, activeId, idx); LDBG("----predicate: " << tmpPredicate); predicate = predicate ? rewriter.create(loc, predicate, tmpPredicate) : tmpPredicate; } } // Step 6. Move the body of forallOp. // Erase the terminator first, it will not be used. rewriter.eraseOp(forallOp.getTerminator()); Block *targetBlock; Block::iterator insertionPoint; if (predicate) { // Step 6.a. If predicated, move at the beginning. auto ifOp = rewriter.create(loc, predicate, /*withElseRegion=*/false); targetBlock = ifOp.thenBlock(); insertionPoint = ifOp.thenBlock()->begin(); } else { // Step 6.b. Otherwise, move inline just at the rewriter insertion // point. targetBlock = forallOp->getBlock(); insertionPoint = rewriter.getInsertionPoint(); } Block &sourceBlock = forallOp.getRegion().front(); targetBlock->getOperations().splice(insertionPoint, sourceBlock.getOperations()); // Step 7. RAUW indices. for (Value loopIndex : forallOp.getInductionVars()) { Value threadIdx = bvm.lookup(loopIndex); rewriter.replaceAllUsesWith(loopIndex, threadIdx); } // Step 8. Erase old op. rewriter.eraseOp(forallOp); LLVM_DEBUG(llvm::interleaveComma(forallMappingSizes, DBGS() << "----result forallMappingSizes: "); llvm::dbgs() << "\n"; llvm::interleaveComma( mappingIdOps, DBGS() << "----result mappingIdOps: "); llvm::dbgs() << "\n"); result = ForallRewriteResult{forallMappingSizes, mappingIdOps}; return DiagnosedSilenceableFailure::success(); } //===----------------------------------------------------------------------===// // MapForallToBlocks //===----------------------------------------------------------------------===// DiagnosedSilenceableFailure mlir::transform::gpu::mapForallToBlocksImpl( RewriterBase &rewriter, TransformOpInterface transformOp, scf::ForallOp forallOp, SmallVectorImpl &gridDims, const GpuIdBuilder &gpuIdBuilder) { LDBG("Start mapForallToBlocksImpl"); { // GPU-specific verifications. There is no better place to anchor // those right now: the ForallOp is target-independent and the transform // op does not apply to individual ForallOp. DiagnosedSilenceableFailure diag = verifyGpuMapping(transformOp, forallOp); if (!diag.succeeded()) return diag; } Location loc = forallOp.getLoc(); Block *parentBlock = forallOp->getBlock(); Value zero; { // Create an early zero index value for replacements and immediately reset // the insertion point. OpBuilder::InsertionGuard guard(rewriter); rewriter.setInsertionPointToStart(parentBlock); zero = rewriter.create(loc, 0); } ForallRewriteResult rewriteResult; DiagnosedSilenceableFailure diag = rewriteOneForallCommonImpl( rewriter, transformOp, forallOp, /*availableMappingSizes=*/gridDims, rewriteResult, gpuIdBuilder); // Return if anything goes wrong, use silenceable failure as a match // failure. if (!diag.succeeded()) return diag; // If gridDims was not provided already, set it from the return. if (gridDims.empty()) { gridDims = rewriteResult.mappingSizes; while (gridDims.size() < 3) gridDims.push_back(1); } assert(gridDims.size() == 3 && "Need 3-D gridDims"); // Replace ids of dimensions known to be 1 by 0 to simplify the IR. // Here, the result of mapping determines the available mapping sizes. replaceUnitMappingIdsHelper(rewriter, loc, parentBlock, zero, rewriteResult.mappingSizes); return DiagnosedSilenceableFailure::success(); } DiagnosedSilenceableFailure mlir::transform::gpu::findTopLevelForallOp(Operation *target, scf::ForallOp &topLevelForallOp, TransformOpInterface transformOp) { auto walkResult = target->walk([&](scf::ForallOp forallOp) { if (forallOp->getParentOfType()) return WalkResult::advance(); if (topLevelForallOp) // TODO: Handle multiple forall if they are independent. return WalkResult::interrupt(); topLevelForallOp = forallOp; return WalkResult::advance(); }); if (walkResult.wasInterrupted() || !topLevelForallOp) return transformOp.emitSilenceableError() << "could not find a unique topLevel scf.forall"; return DiagnosedSilenceableFailure::success(); } DiagnosedSilenceableFailure transform::MapForallToBlocks::applyToOne( transform::TransformRewriter &rewriter, Operation *target, ApplyToEachResultList &results, transform::TransformState &state) { LaunchOp gpuLaunch = dyn_cast(target); auto transformOp = cast(getOperation()); if (!getGenerateGpuLaunch() && !gpuLaunch) { DiagnosedSilenceableFailure diag = emitSilenceableError() << "Given target is not gpu.launch, set `generate_gpu_launch` " "attribute"; diag.attachNote(target->getLoc()) << "when applied to this payload op"; return diag; } scf::ForallOp topLevelForallOp; DiagnosedSilenceableFailure diag = mlir::transform::gpu::findTopLevelForallOp( target, topLevelForallOp, transformOp); if (!diag.succeeded()) { diag.attachNote(target->getLoc()) << "when applied to this payload op"; return diag; } assert(topLevelForallOp && "expect an scf.forall"); SmallVector gridDims{getGridDims()}; if (!getGenerateGpuLaunch() && gridDims.size() != 3) return transformOp.emitDefiniteFailure("transform require size-3 mapping"); OpBuilder::InsertionGuard guard(rewriter); rewriter.setInsertionPoint(topLevelForallOp); // Generate gpu launch here and move the forall inside if (getGenerateGpuLaunch()) { DiagnosedSilenceableFailure diag = createGpuLaunch(rewriter, target->getLoc(), transformOp, gpuLaunch); if (!diag.succeeded()) return diag; rewriter.setInsertionPointToStart(&gpuLaunch.getBody().front()); Operation *newForallOp = rewriter.clone(*topLevelForallOp); rewriter.eraseOp(topLevelForallOp); topLevelForallOp = cast(newForallOp); } // The BlockIdBuilder adapts to whatever is thrown at it. bool useLinearMapping = false; if (topLevelForallOp.getMapping()) { auto mappingAttr = cast( topLevelForallOp.getMapping()->getValue().front()); useLinearMapping = mappingAttr.isLinearMapping(); } GpuBlockIdBuilder gpuBlockIdBuilder(getContext(), useLinearMapping); diag = mlir::transform::gpu::mapForallToBlocksImpl( rewriter, transformOp, topLevelForallOp, gridDims, gpuBlockIdBuilder); if (!diag.succeeded()) return diag; // Set the GPU launch configuration for the grid dims late, this is // subject to IR inspection. diag = alterGpuLaunch(rewriter, gpuLaunch, cast(getOperation()), gridDims[0], gridDims[1], gridDims[2]); results.push_back(gpuLaunch); return diag; } LogicalResult transform::MapForallToBlocks::verify() { if (!getGridDims().empty() && getGridDims().size() != 3) { return emitOpError() << "transform requires empty or size-3 grid_dims"; } return success(); } //===----------------------------------------------------------------------===// // MapNestedForallToThreads //===----------------------------------------------------------------------===// static DiagnosedSilenceableFailure checkMappingSpec( std::optional transformOp, scf::ForallOp forallOp, ArrayRef numParallelIterations, ArrayRef blockOrGridSizes, int factor, bool useLinearMapping = false) { if (!useLinearMapping && blockOrGridSizes.front() % factor != 0) { auto diag = definiteFailureHelper( transformOp, forallOp, Twine("3-D mapping: size of threadIdx.x must be a multiple of ") + std::to_string(factor)); return diag; } if (computeProduct(numParallelIterations) * factor > computeProduct(blockOrGridSizes)) { auto diag = definiteFailureHelper( transformOp, forallOp, Twine("the number of required parallel resources (blocks or " "threads) ") + std::to_string(computeProduct(numParallelIterations) * factor) + std::string(" overflows the number of available resources ") + std::to_string(computeProduct(blockOrGridSizes))); return diag; } return DiagnosedSilenceableFailure::success(); } static DiagnosedSilenceableFailure getThreadIdBuilder(std::optional transformOp, scf::ForallOp forallOp, ArrayRef blockSizes, int64_t warpSize, GpuIdBuilder &gpuIdBuilder) { auto mappingAttr = cast( forallOp.getMapping()->getValue().front()); bool useLinearMapping = mappingAttr.isLinearMapping(); // Sanity checks that may result in runtime verification errors. auto numParallelIterations = getConstantIntValues((forallOp.getMixedUpperBound())); if (!forallOp.isNormalized() || !numParallelIterations.has_value()) { return definiteFailureHelper( transformOp, forallOp, "requires statically sized, normalized forall op"); } int64_t factor = 1; if (isa(mappingAttr)) { factor = GpuWarpgroupIdBuilder::kNumWarpsPerGroup * warpSize; } else if (isa(mappingAttr)) { factor = warpSize; } DiagnosedSilenceableFailure diag = checkMappingSpec(transformOp, forallOp, numParallelIterations.value(), blockSizes, factor, useLinearMapping); if (!diag.succeeded()) return diag; // Start mapping. MLIRContext *ctx = forallOp.getContext(); gpuIdBuilder = TypeSwitch(mappingAttr) .Case([&](GPUWarpgroupMappingAttr) { return GpuWarpgroupIdBuilder(ctx, warpSize, useLinearMapping); }) .Case([&](GPUWarpMappingAttr) { return GpuWarpIdBuilder(ctx, warpSize, useLinearMapping); }) .Case([&](GPUThreadMappingAttr) { return GpuThreadIdBuilder(ctx, useLinearMapping); }) .Default([&](DeviceMappingAttrInterface) -> GpuIdBuilder { llvm_unreachable("unknown mapping attribute"); }); return DiagnosedSilenceableFailure::success(); } DiagnosedSilenceableFailure mlir::transform::gpu::mapOneForallToThreadsImpl( RewriterBase &rewriter, std::optional transformOp, scf::ForallOp forallOp, ArrayRef blockSizes, int64_t warpSize, bool syncAfterDistribute) { { // GPU-specific verifications. There is no better place to anchor // those right now: the ForallOp is target-independent and the transform // op does not apply to individual ForallOp. DiagnosedSilenceableFailure diag = verifyGpuMapping(transformOp, forallOp); if (!diag.succeeded()) return diag; } GpuIdBuilder gpuIdBuilder; { // Try to construct the id builder, if it fails, return. DiagnosedSilenceableFailure diag = getThreadIdBuilder( transformOp, forallOp, blockSizes, warpSize, gpuIdBuilder); if (!diag.succeeded()) return diag; } Location loc = forallOp.getLoc(); OpBuilder::InsertionGuard g(rewriter); // Insert after to allow for syncthreads after `forall` is erased. rewriter.setInsertionPointAfter(forallOp); ForallRewriteResult rewriteResult; DiagnosedSilenceableFailure diag = rewriteOneForallCommonImpl( rewriter, transformOp, forallOp, blockSizes, rewriteResult, gpuIdBuilder); if (!diag.succeeded()) return diag; // Add a syncthreads if needed. TODO: warpsync if (syncAfterDistribute) rewriter.create(loc); return DiagnosedSilenceableFailure::success(); } DiagnosedSilenceableFailure mlir::transform::gpu::mapNestedForallToThreadsImpl( RewriterBase &rewriter, std::optional transformOp, Operation *target, ArrayRef blockDims, int64_t warpSize, bool syncAfterDistribute) { LDBG("Start mapNestedForallToThreadsImpl"); if (blockDims.size() != 3) { return definiteFailureHelper(transformOp, target, "requires size-3 thread mapping"); } // Create an early zero index value for replacements. Location loc = target->getLoc(); Value zero = rewriter.create(loc, 0); DiagnosedSilenceableFailure diag = DiagnosedSilenceableFailure::success(); WalkResult walkResult = target->walk([&](scf::ForallOp forallOp) { diag = mlir::transform::gpu::mapOneForallToThreadsImpl( rewriter, transformOp, forallOp, blockDims, warpSize, syncAfterDistribute); if (diag.isDefiniteFailure()) return WalkResult::interrupt(); if (diag.succeeded()) return WalkResult::skip(); return WalkResult::advance(); }); if (walkResult.wasInterrupted()) return diag; // Replace ids of dimensions known to be 1 by 0 to simplify the IR. // Here, the result of mapping determines the available mapping sizes. replaceUnitMappingIdsHelper(rewriter, loc, target, zero, blockDims); return DiagnosedSilenceableFailure::success(); } DiagnosedSilenceableFailure transform::MapNestedForallToThreads::applyToOne( transform::TransformRewriter &rewriter, Operation *target, ApplyToEachResultList &results, TransformState &state) { LaunchOp gpuLaunch = dyn_cast(target); auto transformOp = cast(getOperation()); // Basic high-level verifications. if (!gpuLaunch) return emitSilenceableError() << "Given target is not a gpu.launch"; // Mapping to block ids. SmallVector blockDims{getBlockDims()}; DiagnosedSilenceableFailure diag = checkGpuLimits(transformOp, std::nullopt, std::nullopt, std::nullopt, blockDims[0], blockDims[1], blockDims[2]); if (diag.isSilenceableFailure()) { diag.attachNote(getLoc()) << getBlockDimsAttrName() << " is too large"; return diag; } // Set the GPU launch configuration for the block dims early, this is not // subject to IR inspection. diag = alterGpuLaunch(rewriter, gpuLaunch, transformOp, std::nullopt, std::nullopt, std::nullopt, blockDims[0], blockDims[1], blockDims[2]); rewriter.setInsertionPointToStart(&gpuLaunch.getBody().front()); diag = mapNestedForallToThreadsImpl(rewriter, transformOp, gpuLaunch, blockDims, getWarpSize(), getSyncAfterDistribute()); results.push_back(gpuLaunch.getOperation()); return diag; } //===----------------------------------------------------------------------===// // Transform op registration //===----------------------------------------------------------------------===// namespace { /// Registers new ops and declares PDL as dependent dialect since the /// additional ops are using PDL types for operands and results. class GPUTransformDialectExtension : public transform::TransformDialectExtension< GPUTransformDialectExtension> { public: GPUTransformDialectExtension() { declareGeneratedDialect(); declareGeneratedDialect(); declareGeneratedDialect(); registerTransformOps< #define GET_OP_LIST #include "mlir/Dialect/GPU/TransformOps/GPUTransformOps.cpp.inc" >(); } }; } // namespace #define GET_OP_CLASSES #include "mlir/Dialect/GPU/TransformOps/GPUTransformOps.cpp.inc" void mlir::gpu::registerTransformDialectExtension(DialectRegistry ®istry) { registry.addExtensions(); }