//===- ICF.cpp ------------------------------------------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Identical Code Folding is a feature to merge sections not by name (which // is regular comdat handling) but by contents. If two non-writable sections // have the same data, relocations, attributes, etc., then the two // are considered identical and merged by the linker. This optimization // makes outputs smaller. // // ICF is theoretically a problem of reducing graphs by merging as many // identical subgraphs as possible if we consider sections as vertices and // relocations as edges. It may sound simple, but it is a bit more // complicated than you might think. The order of processing sections // matters because merging two sections can make other sections, whose // relocations now point to the same section, mergeable. Graphs may contain // cycles. We need a sophisticated algorithm to do this properly and // efficiently. // // What we do in this file is this. We split sections into groups. Sections // in the same group are considered identical. // // We begin by optimistically putting all sections into a single equivalence // class. Then we apply a series of checks that split this initial // equivalence class into more and more refined equivalence classes based on // the properties by which a section can be distinguished. // // We begin by checking that the section contents and flags are the // same. This only needs to be done once since these properties don't depend // on the current equivalence class assignment. // // Then we split the equivalence classes based on checking that their // relocations are the same, where relocation targets are compared by their // equivalence class, not the concrete section. This may need to be done // multiple times because as the equivalence classes are refined, two // sections that had a relocation target in the same equivalence class may // now target different equivalence classes, and hence these two sections // must be put in different equivalence classes (whereas in the previous // iteration they were not since the relocation target was the same.) // // Our algorithm is smart enough to merge the following mutually-recursive // functions. // // void foo() { bar(); } // void bar() { foo(); } // // This algorithm is so-called "optimistic" algorithm described in // http://research.google.com/pubs/pub36912.html. (Note that what GNU // gold implemented is different from the optimistic algorithm.) // //===----------------------------------------------------------------------===// #include "ICF.h" #include "Config.h" #include "SymbolTable.h" #include "llvm/ADT/Hashing.h" #include "llvm/Object/ELF.h" #include "llvm/Support/ELF.h" #include using namespace lld; using namespace lld::elf; using namespace llvm; using namespace llvm::ELF; using namespace llvm::object; namespace { template class ICF { public: void run(); private: uint64_t NextId = 1; using Comparator = std::function *, const InputSection *)>; void segregate(MutableArrayRef *> Arr, Comparator Eq); void forEachGroup(std::vector *> &V, std::function *>)> Fn); }; } // Returns a hash value for S. Note that the information about // relocation targets is not included in the hash value. template static uint64_t getHash(InputSection *S) { return hash_combine(S->Flags, S->getSize(), S->NumRelocations); } // Returns true if section S is subject of ICF. template static bool isEligible(InputSection *S) { // .init and .fini contains instructions that must be executed to // initialize and finalize the process. They cannot and should not // be merged. return S->Live && (S->Flags & SHF_ALLOC) && !(S->Flags & SHF_WRITE) && S->Name != ".init" && S->Name != ".fini"; } template static std::vector *> getSections() { std::vector *> V; for (InputSectionBase *Sec : Symtab::X->Sections) if (auto *S = dyn_cast>(Sec)) if (isEligible(S)) V.push_back(S); return V; } // Before calling this function, all sections in Arr must have the // same group ID. This function compare sections in Arr using Eq and // assign new group IDs for new groups. template void ICF::segregate(MutableArrayRef *> Arr, Comparator Eq) { // This loop rearranges Arr so that all sections that are equal in // terms of Eq are contiguous. The algorithm is quadratic in the // worst case, but that is not an issue in practice because the // number of distinct sections in Arr is usually very small. InputSection **I = Arr.begin(); for (;;) { InputSection *Head = *I; auto Bound = std::stable_partition( I + 1, Arr.end(), [&](InputSection *S) { return Eq(Head, S); }); if (Bound == Arr.end()) return; uint64_t Id = NextId++; for (; I != Bound; ++I) (*I)->GroupId = Id; } } // Call Fn for each section group having the same group ID. template void ICF::forEachGroup( std::vector *> &V, std::function *>)> Fn) { for (InputSection **I = V.data(), **E = I + V.size(); I != E;) { InputSection *Head = *I; auto Bound = std::find_if(I + 1, E, [&](InputSection *S) { return S->GroupId != Head->GroupId; }); Fn({I, Bound}); I = Bound; } } // Compare two lists of relocations. template static bool relocationEq(ArrayRef RelsA, ArrayRef RelsB) { auto Eq = [](const RelTy &A, const RelTy &B) { return A.r_offset == B.r_offset && A.getType(Config->Mips64EL) == B.getType(Config->Mips64EL) && getAddend(A) == getAddend(B); }; return RelsA.size() == RelsB.size() && std::equal(RelsA.begin(), RelsA.end(), RelsB.begin(), Eq); } // Compare "non-moving" part of two InputSections, namely everything // except relocation targets. template static bool equalsConstant(const InputSection *A, const InputSection *B) { if (A->NumRelocations != B->NumRelocations || A->Flags != B->Flags || A->getSize() != B->getSize() || A->Data != B->Data) return false; if (A->AreRelocsRela) return relocationEq(A->relas(), B->relas()); return relocationEq(A->rels(), B->rels()); } // Compare two lists of relocations. Returns true if all pairs of // relocations point to the same section in terms of ICF. template static bool variableEq(const InputSection *A, ArrayRef RelsA, const InputSection *B, ArrayRef RelsB) { auto Eq = [&](const RelTy &RA, const RelTy &RB) { SymbolBody &SA = A->getFile()->getRelocTargetSym(RA); SymbolBody &SB = B->getFile()->getRelocTargetSym(RB); if (&SA == &SB) return true; // Or, the symbols should be pointing to the same section // in terms of the group ID. auto *DA = dyn_cast>(&SA); auto *DB = dyn_cast>(&SB); if (!DA || !DB) return false; if (DA->Value != DB->Value) return false; auto *X = dyn_cast>(DA->Section); auto *Y = dyn_cast>(DB->Section); return X && Y && X->GroupId && X->GroupId == Y->GroupId; }; return std::equal(RelsA.begin(), RelsA.end(), RelsB.begin(), Eq); } // Compare "moving" part of two InputSections, namely relocation targets. template static bool equalsVariable(const InputSection *A, const InputSection *B) { if (A->AreRelocsRela) return variableEq(A, A->relas(), B, B->relas()); return variableEq(A, A->rels(), B, B->rels()); } // The main function of ICF. template void ICF::run() { // Initially, we use hash values as section group IDs. Therefore, // if two sections have the same ID, they are likely (but not // guaranteed) to have the same static contents in terms of ICF. std::vector *> Sections = getSections(); for (InputSection *S : Sections) // Set MSB on to avoid collisions with serial group IDs S->GroupId = getHash(S) | (uint64_t(1) << 63); // From now on, sections in Sections are ordered so that sections in // the same group are consecutive in the vector. std::stable_sort(Sections.begin(), Sections.end(), [](InputSection *A, InputSection *B) { if (A->GroupId != B->GroupId) return A->GroupId < B->GroupId; // Within a group, put the highest alignment // requirement first, so that's the one we'll keep. return B->Alignment < A->Alignment; }); // Compare static contents and assign unique IDs for each static content. forEachGroup(Sections, [&](MutableArrayRef *> V) { segregate(V, equalsConstant); }); // Split groups by comparing relocations until we get a convergence. int Cnt = 1; for (;;) { ++Cnt; uint64_t Id = NextId; forEachGroup(Sections, [&](MutableArrayRef *> V) { segregate(V, equalsVariable); }); if (Id == NextId) break; } log("ICF needed " + Twine(Cnt) + " iterations."); // Merge sections in the same group. forEachGroup(Sections, [](MutableArrayRef *> V) { log("selected " + V[0]->Name); for (InputSection *S : V.slice(1)) { log(" removed " + S->Name); V[0]->replace(S); } }); } // ICF entry point function. template void elf::doIcf() { ICF().run(); } template void elf::doIcf(); template void elf::doIcf(); template void elf::doIcf(); template void elf::doIcf();