//===------------- AMDGPU implementation of timing utils --------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef LLVM_LIBC_UTILS_GPU_TIMING_AMDGPU #define LLVM_LIBC_UTILS_GPU_TIMING_AMDGPU #include "src/__support/CPP/array.h" #include "src/__support/CPP/type_traits.h" #include "src/__support/GPU/utils.h" #include "src/__support/common.h" #include "src/__support/macros/attributes.h" #include "src/__support/macros/config.h" #include namespace LIBC_NAMESPACE_DECL { // Returns the overhead associated with calling the profiling region. This // allows us to substract the constant-time overhead from the latency to // obtain a true result. This can vary with system load. [[gnu::noinline]] static LIBC_INLINE uint64_t overhead() { gpu::memory_fence(); uint64_t start = gpu::processor_clock(); uint32_t result = 0.0; asm("v_or_b32 %[v_reg], 0, %[v_reg]\n" ::[v_reg] "v"(result)); asm("" ::"s"(start)); uint64_t stop = gpu::processor_clock(); return stop - start; } // Profile a simple function and obtain its latency in clock cycles on the // system. This function cannot be inlined or else it will disturb the very // delicate balance of hard-coded dependencies. template [[gnu::noinline]] static LIBC_INLINE uint64_t latency(F f, T t) { // We need to store the input somewhere to guarantee that the compiler // will not constant propagate it and remove the profiling region. volatile T storage = t; T arg = storage; // The AMDGPU architecture needs to wait on pending results. gpu::memory_fence(); // Get the current timestamp from the clock. uint64_t start = gpu::processor_clock(); // This forces the compiler to load the input argument and run the clock // cycle counter before the profiling region. asm("" ::"s"(start)); // Run the function under test and return its value. auto result = f(arg); // This inline assembly performs a no-op which forces the result to both // be used and prevents us from exiting this region before it's complete. if constexpr (cpp::is_same_v || cpp::is_same_v) // AMDGPU does not support input register constraints for i1 and i8, so we // cast it to a 32-bit integer. This does not add an additional assembly // instruction (https://godbolt.org/z/zxGqv8G91). asm("v_or_b32 %[v_reg], 0, %[v_reg]\n" ::[v_reg] "v"( static_cast(result))); else asm("v_or_b32 %[v_reg], 0, %[v_reg]\n" ::[v_reg] "v"(result)); // Obtain the current timestamp after running the calculation and force // ordering. uint64_t stop = gpu::processor_clock(); asm("" ::"s"(stop)); gpu::memory_fence(); // Return the time elapsed. return stop - start; } template [[gnu::noinline]] static LIBC_INLINE uint64_t latency(F f, T1 t1, T2 t2) { volatile T1 storage1 = t1; volatile T2 storage2 = t2; T1 arg1 = storage1; T2 arg2 = storage2; gpu::memory_fence(); uint64_t start = gpu::processor_clock(); asm("" ::"s"(start)); auto result = f(arg1, arg2); if constexpr (cpp::is_same_v || cpp::is_same_v) asm("v_or_b32 %[v_reg], 0, %[v_reg]\n" ::[v_reg] "v"( static_cast(result))); else asm("v_or_b32 %[v_reg], 0, %[v_reg]\n" ::[v_reg] "v"(result)); uint64_t stop = gpu::processor_clock(); asm("" ::"s"(stop)); gpu::memory_fence(); return stop - start; } // Provides throughput benchmarking. template [[gnu::noinline]] static LIBC_INLINE uint64_t throughput(F f, const cpp::array &inputs) { asm("" ::"v"(&inputs)); gpu::memory_fence(); uint64_t start = gpu::processor_clock(); asm("" ::"s"(start)); for (auto input : inputs) { auto result = f(input); asm("" ::"v"(result)); } uint64_t stop = gpu::processor_clock(); asm("" ::"s"(stop)); gpu::memory_fence(); // Return the time elapsed. return stop - start; } // Provides throughput benchmarking for 2 arguments (e.g. atan2()) template [[gnu::noinline]] static LIBC_INLINE uint64_t throughput( F f, const cpp::array &inputs1, const cpp::array &inputs2) { asm("" ::"v"(&inputs1), "v"(&inputs2)); gpu::memory_fence(); uint64_t start = gpu::processor_clock(); asm("" ::"s"(start)); for (size_t i = 0; i < inputs1.size(); i++) { auto result = f(inputs1[i], inputs2[i]); asm("" ::"v"(result)); } uint64_t stop = gpu::processor_clock(); asm("" ::"s"(stop)); gpu::memory_fence(); // Return the time elapsed. return stop - start; } } // namespace LIBC_NAMESPACE_DECL #endif // LLVM_LIBC_UTILS_GPU_TIMING_AMDGPU