# RUN: env SUPPORT_LIB=%mlir_cuda_runtime \ # RUN: %PYTHON %s | FileCheck %s # ===----------------------------------------------------------------------===// # Chapter 3 : GEMM 128x128x64 with Tensor Core # ===----------------------------------------------------------------------===// # # This program demonstrates a GEMM operation with 128x128x64 matrix multiplication # # This chapter introduces demonstrates: # 1. Execute TMA Load for two input matrices # 2. Performs Tensor Core GEMM 128x128x64 by warpgroup # 3. Stores fragmented registers to global memory by warpgroup # # ===----------------------------------------------------------------------===// from mlir import ir from mlir.dialects import nvgpu, scf, arith, memref, vector, gpu from tools.nvdsl import * from mlir.extras import types as T import numpy as np def tma_load( mbar_group: Mbarriers, a_tma: TMA, b_tma: TMA, p, ): """ TMA loads two input matrices from global memory to shared memory. It performs the following operations: - tma.load a_shared_memory[0] at coordinate [0, 0] (Loads 128x64) - tma.load b_shared_memory[0] at coordinate [0, 0] (Loads 64x64) - tma.load b_shared_memory[0] at coordinate [64, 0] (Loads 64x64) mbarrier.arrive ta_count = 128x64xf16 + 64x128xf16 """ size_tma_a = get_type_size(a_tma.tma_memref) size_tma_b = get_type_size(b_tma.tma_memref) ta_count = size_tma_a + (size_tma_b * 2) off_b = size_tma_a off_b2 = off_b + size_tma_b a_elem_ty = a_tma.tma_memref.element_type b_elem_ty = b_tma.tma_memref.element_type a = get_dynamic_shared_memory(a_tma.tma_memref.shape, a_elem_ty) b1 = get_dynamic_shared_memory(b_tma.tma_memref.shape, b_elem_ty, off_b) b2 = get_dynamic_shared_memory(b_tma.tma_memref.shape, b_elem_ty, off_b2) mbar_group[0].arrive(ta_count, predicate=p) a_tma.load(a, mbar_group[0], coords=[0, 0], predicate=p) b_tma.load(b1, mbar_group[0], coords=[0, 0], predicate=p) b_tma.load(b2, mbar_group[0], coords=[64, 0], predicate=p) @NVDSL.mlir_func def gemm_128_128_64(a, b, d): token_ty = gpu.AsyncTokenType.get() t1 = gpu.wait(token_ty, []) a_dev, t2 = gpu.alloc(a.type, token_ty, [t1], [], []) b_dev, t3 = gpu.alloc(b.type, token_ty, [t2], [], []) d_dev, t4 = gpu.alloc(d.type, token_ty, [t3], [], []) t5 = gpu.memcpy(token_ty, [t4], a_dev, a) t6 = gpu.memcpy(token_ty, [t5], b_dev, b) t7 = gpu.wait(token_ty, [t6]) sw = nvgpu.TensorMapSwizzleKind.SWIZZLE_128B a_tma = TMA([128, 64], a.type, swizzle=sw) b_tma = TMA([64, 64], b.type, swizzle=sw) a_tma.create_descriptor(a_dev) b_tma.create_descriptor(b_dev) a_size = get_type_size(a.type) b_size = get_type_size(b.type) smem_size_in_bytes = a_size + b_size @NVDSL.mlir_gpu_launch(grid=(1, 1, 1), block=(128, 1, 1), smem=smem_size_in_bytes) def gemm_tma_kernel(): tidx = gpu.thread_id(gpu.Dimension.x) mbar_group = Mbarriers(number_of_barriers=1) isThread0 = tidx == 0 mbar_group[0].init(1, predicate=isThread0) a_tma.prefetch(predicate=isThread0) b_tma.prefetch(predicate=isThread0) a_smem = get_dynamic_shared_memory((M, K), T.f16()) b_smem = get_dynamic_shared_memory((K, N), T.f16(), offset=a_size) # 1. TMA Load for two input matrices tma_load(mbar_group, a_tma, b_tma, isThread0) # 2. All threads wait TMA load completion mbar_group[0].try_wait() # 3. Performs Tensor Core GEMM 128x128x64 by warpgroup A = WGMMAMatrix(WGMMAType.Descriptor, [M, K], desc=a_tma, smem=a_smem) B = WGMMAMatrix(WGMMAType.Descriptor, [K, N], desc=b_tma, smem=b_smem) D = WGMMAMatrix(WGMMAType.Accumulator, shape=[M, N], ty=T.f32()) # Matrix Multiply D += A @ B # 4. Stores fragmented registers to global memory by warpgroup D.store_accumulator(d_dev) gemm_tma_kernel() t8 = gpu.memcpy(token_ty, [t7], d, d_dev) gpu.wait(None, [t8]) # Python pass arguments to MLIR M = 128 N = 128 K = 64 a = np.random.randn(M, K).astype(np.float16) b = np.random.randn(K, N).astype(np.float16) d = np.zeros((M, N), np.float32) gemm_128_128_64(a, b, d) ref_d = a.astype(np.float16) @ b.astype(np.float16) np.testing.assert_allclose(d, ref_d, rtol=5e-03, atol=1e-01) print("PASS") # CHECK-NOT: Mismatched elements