// RUN: mlir-opt %s \ // RUN: | mlir-opt -gpu-lower-to-nvvm-pipeline="cubin-format=%gpu_compilation_format" \ // RUN: | mlir-cpu-runner \ // RUN: --shared-libs=%mlir_cuda_runtime \ // RUN: --shared-libs=%mlir_runner_utils \ // RUN: --shared-libs=%mlir_c_runner_utils \ // RUN: --entry-point-result=void \ // RUN: | FileCheck %s // CHECK: 2000 module attributes {gpu.container_module} { func.func @main() { %c1 = arith.constant 1 : index %c0 = arith.constant 0 : index %c1000_i32 = arith.constant 1000 : i32 %memref = gpu.alloc host_shared () : memref<1xi32> memref.store %c1000_i32, %memref[%c1] : memref<1xi32> gpu.launch blocks(%arg0, %arg1, %arg2) in (%arg6 = %c1, %arg7 = %c1, %arg8 = %c1) threads(%arg3, %arg4, %arg5) in (%arg9 = %c1, %arg10 = %c1, %arg11 = %c1) { %1 = memref.load %memref[%c1] : memref<1xi32> %2 = arith.addi %1, %1 : i32 memref.store %2, %memref[%c1] : memref<1xi32> gpu.terminator } %0 = memref.load %memref[%c1] : memref<1xi32> vector.print %0 : i32 return } }