// RUN: mlir-opt %s -transform-interpreter -split-input-file | FileCheck %s ///---------------------------------------------------------------------------------------- /// Tests for linalg.generic ///---------------------------------------------------------------------------------------- func.func @vectorize_dynamic_identity(%arg0: tensor, %arg1: tensor, %arg2: tensor) -> tensor { %0 = linalg.generic { indexing_maps = [affine_map<(d0) -> (d0)>, affine_map<(d0) -> (d0)>, affine_map<(d0) -> (d0)>], iterator_types = ["parallel"] } ins(%arg0, %arg1 : tensor, tensor) outs(%arg2 : tensor) { ^bb(%in0: f32, %in1: f32, %out: f32) : %0 = arith.addf %in0, %in1 : f32 linalg.yield %0 : f32 } -> tensor return %0 : tensor } // CHECK-LABEL: @vectorize_dynamic_identity // CHECK: %[[VAL_3:.*]] = arith.constant 0 : index // CHECK: %[[VAL_4:.*]] = tensor.dim %{{.*}}, %[[VAL_3]] : tensor // CHECK: %[[VAL_7:.*]] = vector.create_mask %[[VAL_4]] : vector<4xi1> // CHECK: %[[VAL_8:.*]] = vector.mask %[[VAL_7]] { vector.transfer_read %{{.*}} {in_bounds = [true]} : tensor, vector<4xf32> } : vector<4xi1> -> vector<4xf32> // CHECK: %[[VAL_10:.*]] = vector.mask %[[VAL_7]] { vector.transfer_read %{{.*}} {in_bounds = [true]} : tensor, vector<4xf32> } : vector<4xi1> -> vector<4xf32> // CHECK: %[[VAL_12:.*]] = vector.mask %[[VAL_7]] { vector.transfer_read %{{.*}} {in_bounds = [true]} : tensor, vector<4xf32> } : vector<4xi1> -> vector<4xf32> // CHECK: %[[VAL_13:.*]] = arith.addf %[[VAL_8]], %[[VAL_10]] : vector<4xf32> // CHECK: %[[VAL_14:.*]] = vector.mask %[[VAL_7]] { vector.transfer_write %{{.*}} {in_bounds = [true]} : vector<4xf32>, tensor } : vector<4xi1> -> tensor module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.vectorize %0 vector_sizes [4] : !transform.any_op transform.yield } } // ----- func.func @vectorize_dynamic_identity_scalable(%arg0: tensor, %arg1: tensor, %arg2: tensor) -> tensor { %0 = linalg.generic { indexing_maps = [affine_map<(d0) -> (d0)>, affine_map<(d0) -> (d0)>, affine_map<(d0) -> (d0)>], iterator_types = ["parallel"] } ins(%arg0, %arg1 : tensor, tensor) outs(%arg2 : tensor) { ^bb(%in0: f32, %in1: f32, %out: f32) : %0 = arith.addf %in0, %in1 : f32 linalg.yield %0 : f32 } -> tensor return %0 : tensor } // CHECK-LABEL: @vectorize_dynamic_identity_scalable // CHECK: %[[VAL_3:.*]] = arith.constant 0 : index // CHECK: %[[VAL_4:.*]] = tensor.dim %{{.*}}, %[[VAL_3]] : tensor // CHECK: %[[VAL_7:.*]] = vector.create_mask %[[VAL_4]] : vector<[4]xi1> // CHECK: %[[VAL_8:.*]] = vector.mask %[[VAL_7]] { vector.transfer_read %{{.*}} {in_bounds = [true]} : tensor, vector<[4]xf32> } : vector<[4]xi1> -> vector<[4]xf32> // CHECK: %[[VAL_10:.*]] = vector.mask %[[VAL_7]] { vector.transfer_read %{{.*}} {in_bounds = [true]} : tensor, vector<[4]xf32> } : vector<[4]xi1> -> vector<[4]xf32> // CHECK: %[[VAL_12:.*]] = vector.mask %[[VAL_7]] { vector.transfer_read %{{.*}} {in_bounds = [true]} : tensor, vector<[4]xf32> } : vector<[4]xi1> -> vector<[4]xf32> // CHECK: %[[VAL_13:.*]] = arith.addf %[[VAL_8]], %[[VAL_10]] : vector<[4]xf32> // CHECK: %[[VAL_14:.*]] = vector.mask %[[VAL_7]] { vector.transfer_write %{{.*}} {in_bounds = [true]} : vector<[4]xf32>, tensor } : vector<[4]xi1> -> tensor module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.vectorize %0 vector_sizes [[4]] : !transform.any_op transform.yield } } // ----- func.func @vectorize_dynamic_identity_with_constant(%arg0: tensor, %arg1: tensor, %arg2: tensor) -> tensor { %c4 = arith.constant 4 : index %0 = linalg.generic { indexing_maps = [affine_map<(d0) -> (d0)>, affine_map<(d0) -> (d0)>, affine_map<(d0) -> (d0)>], iterator_types = ["parallel"] } ins(%arg0, %arg1 : tensor, tensor) outs(%arg2 : tensor) { ^bb(%in0: f32, %in1: f32, %out: f32) : %0 = arith.addf %in0, %in1 : f32 linalg.yield %0 : f32 } -> tensor return %0 : tensor } // CHECK-LABEL: @vectorize_dynamic_identity_with_constant // CHECK: %[[VAL_3:.*]] = arith.constant 0 : index // CHECK: %[[VAL_4:.*]] = tensor.dim %{{.*}}, %[[VAL_3]] : tensor // CHECK: %[[VAL_7:.*]] = vector.create_mask %[[VAL_4]] : vector<4xi1> // CHECK: %[[VAL_8:.*]] = vector.mask %[[VAL_7]] { vector.transfer_read %{{.*}} {in_bounds = [true]} : tensor, vector<4xf32> } : vector<4xi1> -> vector<4xf32> // CHECK: %[[VAL_10:.*]] = vector.mask %[[VAL_7]] { vector.transfer_read %{{.*}} {in_bounds = [true]} : tensor, vector<4xf32> } : vector<4xi1> -> vector<4xf32> // CHECK: %[[VAL_12:.*]] = vector.mask %[[VAL_7]] { vector.transfer_read %{{.*}} {in_bounds = [true]} : tensor, vector<4xf32> } : vector<4xi1> -> vector<4xf32> // CHECK: %[[VAL_13:.*]] = arith.addf %[[VAL_8]], %[[VAL_10]] : vector<4xf32> // CHECK: %[[VAL_14:.*]] = vector.mask %[[VAL_7]] { vector.transfer_write %{{.*}} {in_bounds = [true]} : vector<4xf32>, tensor } : vector<4xi1> -> tensor module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op %size = transform.structured.match ops{["arith.constant"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.vectorize %0 vector_sizes [%size] : !transform.any_op, !transform.any_op transform.yield } } // ----- func.func @vectorize_dynamic_identity_with_param(%arg0: tensor, %arg1: tensor, %arg2: tensor) -> tensor { %0 = linalg.generic { indexing_maps = [affine_map<(d0) -> (d0)>, affine_map<(d0) -> (d0)>, affine_map<(d0) -> (d0)>], iterator_types = ["parallel"] } ins(%arg0, %arg1 : tensor, tensor) outs(%arg2 : tensor) { ^bb(%in0: f32, %in1: f32, %out: f32) : %0 = arith.addf %in0, %in1 : f32 linalg.yield %0 : f32 } -> tensor return %0 : tensor } // CHECK-LABEL: @vectorize_dynamic_identity_with_param // CHECK: %[[VAL_3:.*]] = arith.constant 0 : index // CHECK: %[[VAL_4:.*]] = tensor.dim %{{.*}}, %[[VAL_3]] : tensor // CHECK: %[[VAL_7:.*]] = vector.create_mask %[[VAL_4]] : vector<4xi1> // CHECK: %[[VAL_8:.*]] = vector.mask %[[VAL_7]] { vector.transfer_read %{{.*}} {in_bounds = [true]} : tensor, vector<4xf32> } : vector<4xi1> -> vector<4xf32> // CHECK: %[[VAL_10:.*]] = vector.mask %[[VAL_7]] { vector.transfer_read %{{.*}} {in_bounds = [true]} : tensor, vector<4xf32> } : vector<4xi1> -> vector<4xf32> // CHECK: %[[VAL_12:.*]] = vector.mask %[[VAL_7]] { vector.transfer_read %{{.*}} {in_bounds = [true]} : tensor, vector<4xf32> } : vector<4xi1> -> vector<4xf32> // CHECK: %[[VAL_13:.*]] = arith.addf %[[VAL_8]], %[[VAL_10]] : vector<4xf32> // CHECK: %[[VAL_14:.*]] = vector.mask %[[VAL_7]] { vector.transfer_write %{{.*}} {in_bounds = [true]} : vector<4xf32>, tensor } : vector<4xi1> -> tensor module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op %vector_size = transform.param.constant 4 : i64 -> !transform.param transform.structured.vectorize %0 vector_sizes [%vector_size] : !transform.any_op, !transform.param transform.yield } } // ----- func.func @vectorize_dynamic_1d_broadcast(%arg0: tensor, %arg1: tensor, %arg2: tensor) -> tensor { %0 = linalg.generic { indexing_maps = [affine_map<(d0) -> (0)>, affine_map<(d0) -> (d0)>, affine_map<(d0) -> (d0)>], iterator_types = ["parallel"] } ins(%arg0, %arg1 : tensor, tensor) outs(%arg2 : tensor) { ^bb(%in0: f32, %in1: f32, %out: f32) : %0 = arith.addf %in0, %in1 : f32 linalg.yield %0 : f32 } -> tensor return %0 : tensor } // CHECK-LABEL: @vectorize_dynamic_1d_broadcast // CHECK: %[[VAL_3:.*]] = arith.constant 0 : index // CHECK: %[[VAL_4:.*]] = tensor.dim %{{.*}}, %[[VAL_3]] : tensor // CHECK: %[[VAL_7:.*]] = vector.transfer_read %{{.*}} {permutation_map = #{{.*}}} : tensor, vector<4xf32> // CHECK: %[[VAL_9:.*]] = vector.create_mask %[[VAL_4]] : vector<4xi1> // CHECK: %[[VAL_10:.*]] = vector.mask %[[VAL_9]] { vector.transfer_read %{{.*}} {in_bounds = [true]} : tensor, vector<4xf32> } : vector<4xi1> -> vector<4xf32> // CHECK: %[[VAL_12:.*]] = vector.mask %[[VAL_9]] { vector.transfer_read %{{.*}} {in_bounds = [true]} : tensor, vector<4xf32> } : vector<4xi1> -> vector<4xf32> // CHECK: %[[VAL_13:.*]] = arith.addf %[[VAL_7]], %[[VAL_10]] : vector<4xf32> // CHECK: %[[VAL_14:.*]] = vector.mask %{{.*}} { vector.transfer_write %[[VAL_13]], {{.*}} {in_bounds = [true]} : vector<4xf32>, tensor } : vector<4xi1> -> tensor module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.vectorize %0 vector_sizes [4] : !transform.any_op transform.yield } } // ----- #map = affine_map<(d0, d1) -> (d0, d1)> #map1 = affine_map<(d0, d1) -> (d0, 0)> func.func @dynamic_generic_with_reduction_and_broadcast(%arg0: tensor, %init: tensor) -> (tensor) { %0 = linalg.generic { indexing_maps = [#map, #map1], iterator_types = ["parallel", "reduction"]} ins(%arg0 : tensor) outs(%init : tensor) { ^bb0(%in: f32, %out: f32): %1 = arith.addf %in, %out : f32 linalg.yield %1 : f32 } -> tensor return %0 : tensor } // CHECK: #[[$MAP:.+]] = affine_map<(d0, d1) -> (d0)> // CHECK-LABEL: func.func @dynamic_generic_with_reduction_and_broadcast( // CHECK-SAME: %[[VAL_0:.*]]: tensor, // CHECK-SAME: %[[VAL_1:.*]]: tensor) -> tensor { // CHECK: %[[VAL_2:.*]] = arith.constant 0 : index // CHECK: %[[VAL_3:.*]] = tensor.dim %[[VAL_0]], %[[VAL_2]] : tensor // CHECK: %[[VAL_4:.*]] = arith.constant 1 : index // CHECK: %[[VAL_5:.*]] = tensor.dim %[[VAL_0]], %[[VAL_4]] : tensor // CHECK: %[[VAL_6:.*]] = arith.constant 0 : index // CHECK: %[[VAL_7:.*]] = ub.poison : f32 // CHECK: %[[VAL_8:.*]] = vector.create_mask %[[VAL_3]], %[[VAL_5]] : vector<4x4xi1> // CHECK: %[[VAL_9:.*]] = vector.mask %[[VAL_8]] { vector.transfer_read %[[VAL_0]]{{\[}}%[[VAL_6]], %[[VAL_6]]], %[[VAL_7]] {in_bounds = [true, true]} : tensor, vector<4x4xf32> } : vector<4x4xi1> -> vector<4x4xf32> // CHECK: %[[VAL_10:.*]] = ub.poison : f32 // CHECK: %[[VAL_11:.*]] = vector.create_mask %[[VAL_3]] : vector<4xi1> // CHECK: %[[VAL_12:.*]] = vector.mask %[[VAL_11]] { vector.transfer_read %[[VAL_1]]{{\[}}%[[VAL_6]], %[[VAL_6]]], %[[VAL_10]] {in_bounds = [true], permutation_map = #[[$MAP]]} : tensor, vector<4xf32> } : vector<4xi1> -> vector<4xf32> // CHECK: %[[VAL_13:.*]] = vector.mask %[[VAL_8]] { vector.multi_reduction , %[[VAL_9]], %[[VAL_12]] [1] : vector<4x4xf32> to vector<4xf32> } : vector<4x4xi1> -> vector<4xf32> // CHECK: %[[VAL_14:.*]] = arith.constant 0 : index // CHECK: %[[VAL_15:.*]] = vector.mask %[[VAL_11]] { vector.transfer_write %[[VAL_13]], %[[VAL_1]]{{\[}}%[[VAL_14]], %[[VAL_14]]] {in_bounds = [true], permutation_map = #[[$MAP]]} : vector<4xf32>, tensor } : vector<4xi1> -> tensor // CHECK: return %[[VAL_15]] : tensor module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.vectorize %0 vector_sizes [4, 4] : !transform.any_op transform.yield } } // ----- func.func @vectorize_dynamic_2d_transpose(%arg0: tensor, %arg1: tensor, %arg2: tensor) -> tensor { %0 = linalg.generic { indexing_maps = [affine_map<(d0, d1) -> (d1, d0)>, affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>], iterator_types = ["parallel", "parallel"] } ins(%arg0, %arg1 : tensor, tensor) outs(%arg2 : tensor) { ^bb(%in0: f32, %in1: f32, %out: f32) : %0 = arith.addf %in0, %in1 : f32 linalg.yield %0 : f32 } -> tensor return %0 : tensor } // CHECK-LABEL: @vectorize_dynamic_2d_transpose // CHECK: %[[VAL_3:.*]] = arith.constant 1 : index // CHECK: %[[VAL_4:.*]] = tensor.dim %{{.*}}, %[[VAL_3]] : tensor // CHECK: %[[VAL_5:.*]] = arith.constant 0 : index // CHECK: %[[VAL_6:.*]] = tensor.dim %{{.*}}, %[[VAL_5]] : tensor // CHECK: %[[VAL_9:.*]] = vector.create_mask %[[VAL_6]], %[[VAL_4]] : vector<8x4xi1> // CHECK: %[[VAL_10:.*]] = vector.mask %[[VAL_9]] { vector.transfer_read %{{.*}} {in_bounds = [true, true], permutation_map = #{{.*}}} : tensor, vector<4x8xf32> } : vector<8x4xi1> -> vector<4x8xf32> // CHECK: %[[VAL_12:.*]] = vector.create_mask %[[VAL_4]], %[[VAL_6]] : vector<4x8xi1> // CHECK: %[[VAL_13:.*]] = vector.mask %[[VAL_12]] { vector.transfer_read %{{.*}} {in_bounds = [true, true]} : tensor, vector<4x8xf32> } : vector<4x8xi1> -> vector<4x8xf32> // CHECK: %[[VAL_14:.*]] = ub.poison : f32 // CHECK: %[[VAL_15:.*]] = vector.mask %[[VAL_12]] { vector.transfer_read %{{.*}} {in_bounds = [true, true]} : tensor, vector<4x8xf32> } : vector<4x8xi1> -> vector<4x8xf32> // CHECK: %[[VAL_16:.*]] = arith.addf %[[VAL_10]], %[[VAL_13]] : vector<4x8xf32> // CHECK: %[[VAL_17:.*]] = vector.mask %[[VAL_12]] { vector.transfer_write %[[VAL_16]], %{{.*}} {in_bounds = [true, true]} : vector<4x8xf32>, tensor } : vector<4x8xi1> -> tensor module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.vectorize %0 vector_sizes [4, 8] : !transform.any_op transform.yield } } // ----- func.func @vectorize_dynamic_generic_2d_broadcast(%arg0: tensor, %arg1: tensor, %arg2: tensor) -> tensor { %0 = linalg.generic { indexing_maps = [affine_map<(d0, d1) -> (0, d1)>, affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>], iterator_types = ["parallel", "parallel"] } ins(%arg0, %arg1 : tensor, tensor) outs(%arg2 : tensor) { ^bb(%in0: f32, %in1: f32, %out: f32) : %0 = arith.addf %in0, %in1 : f32 linalg.yield %0 : f32 } -> tensor return %0 : tensor } // CHECK-LABEL: @vectorize_dynamic_generic_2d_broadcast // CHECK: %[[VAL_3:.*]] = arith.constant 0 : index // CHECK: %[[VAL_4:.*]] = tensor.dim %{{.*}}, %[[VAL_3]] : tensor // CHECK: %[[VAL_5:.*]] = arith.constant 1 : index // CHECK: %[[VAL_6:.*]] = tensor.dim %{{.*}}, %[[VAL_5]] : tensor // CHECK: %[[VAL_9:.*]] = vector.create_mask %[[VAL_6]] : vector<8xi1> // CHECK: %[[VAL_10:.*]] = vector.mask %[[VAL_9]] { vector.transfer_read %{{.*}} {in_bounds = [true, true], permutation_map = #{{.*}}} : tensor, vector<4x8xf32> } : vector<8xi1> -> vector<4x8xf32> // CHECK: %[[VAL_12:.*]] = vector.create_mask %[[VAL_4]], %[[VAL_6]] : vector<4x8xi1> // CHECK: %[[VAL_13:.*]] = vector.mask %[[VAL_12]] { vector.transfer_read %{{.*}} {in_bounds = [true, true]} : tensor, vector<4x8xf32> } : vector<4x8xi1> -> vector<4x8xf32> // CHECK: %[[VAL_15:.*]] = vector.mask %[[VAL_12]] { vector.transfer_read %{{.*}} {in_bounds = [true, true]} : tensor, vector<4x8xf32> } : vector<4x8xi1> -> vector<4x8xf32> // CHECK: %[[VAL_16:.*]] = arith.addf %[[VAL_10]], %[[VAL_13]] : vector<4x8xf32> // CHECK: %[[VAL_18:.*]] = vector.mask %[[VAL_12]] { vector.transfer_write %{{.*}} {in_bounds = [true, true]} : vector<4x8xf32>, tensor } : vector<4x8xi1> -> tensor module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.vectorize %0 vector_sizes [4, 8] : !transform.any_op transform.yield } } // ----- func.func @vectorize_dynamic_reduction_2d(%arg0: tensor, %arg1: tensor) -> tensor { %0 = linalg.generic { indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0)>], iterator_types = ["parallel", "reduction"] } ins(%arg0 : tensor) outs(%arg1 : tensor) { ^bb(%in: f32, %out: f32) : %0 = arith.addf %in, %out : f32 linalg.yield %0 : f32 } -> tensor return %0 : tensor } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.vectorize %0 vector_sizes [4, 8] : !transform.any_op transform.yield } } // CHECK-LABEL: @vectorize_dynamic_reduction_2d( // CHECK-SAME: %[[VAL_0:.*]]: tensor, // CHECK-SAME: %[[VAL_1:.*]]: tensor) -> tensor { // CHECK: %[[VAL_2:.*]] = arith.constant 0 : index // CHECK: %[[VAL_3:.*]] = tensor.dim %[[VAL_0]], %[[VAL_2]] : tensor // CHECK: %[[VAL_4:.*]] = arith.constant 1 : index // CHECK: %[[VAL_5:.*]] = tensor.dim %[[VAL_0]], %[[VAL_4]] : tensor // CHECK: %[[VAL_8:.*]] = vector.create_mask %[[VAL_3]], %[[VAL_5]] : vector<4x8xi1> // CHECK: %[[VAL_9:.*]] = vector.mask %[[VAL_8]] { vector.transfer_read %[[VAL_0]]{{.*}} {in_bounds = [true, true]} : tensor, vector<4x8xf32> } : vector<4x8xi1> -> vector<4x8xf32> // CHECK: %[[VAL_11:.*]] = vector.create_mask %[[VAL_3]] : vector<4xi1> // CHECK: %[[VAL_12:.*]] = vector.mask %[[VAL_11]] { vector.transfer_read %[[VAL_1]]{{.*}} {in_bounds = [true]} : tensor, vector<4xf32> } : vector<4xi1> -> vector<4xf32> // CHECK: %[[VAL_13:.*]] = vector.mask %[[VAL_8]] { vector.multi_reduction , %[[VAL_9]], %[[VAL_12]] [1] : vector<4x8xf32> to vector<4xf32> } : vector<4x8xi1> -> vector<4xf32> // CHECK: %[[VAL_15:.*]] = vector.mask %[[VAL_11]] { vector.transfer_write %[[VAL_13]], %[[VAL_1]]{{.*}} {in_bounds = [true]} : vector<4xf32>, tensor } : vector<4xi1> -> tensor // CHECK: return %[[VAL_15]] : tensor // CHECK: } // ----- func.func @vectorize_dynamic_reduction_2d_scalable(%arg0: tensor, %arg1: tensor) -> tensor { %0 = linalg.generic { indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0)>], iterator_types = ["parallel", "reduction"] } ins(%arg0 : tensor) outs(%arg1 : tensor) { ^bb(%in: f32, %out: f32) : %0 = arith.addf %in, %out : f32 linalg.yield %0 : f32 } -> tensor return %0 : tensor } // CHECK-LABEL: func.func @vectorize_dynamic_reduction_2d_scalable( // CHECK-SAME: %[[ARG_0:.*]]: tensor, %[[ARG_1:.*]]: tensor) -> tensor { // CHECK: %[[C0_IDX:.*]] = arith.constant 0 : index // CHECK: %[[DIM_A0_0:.*]] = tensor.dim %[[ARG_0]], %[[C0_IDX]] : tensor // CHECK: %[[C1_IDX:.*]] = arith.constant 1 : index // CHECK: %[[DIM_A0_1:.*]] = tensor.dim %[[ARG_0]], %[[C1_IDX]] : tensor // CHECK: %[[C0_IDX:.*]] = arith.constant 0 : index // CHECK: %[[PV:.*]] = ub.poison : f32 // CHECK: %[[MASK_2D:.*]] = vector.create_mask %[[DIM_A0_0]], %[[DIM_A0_1]] : vector<4x[8]xi1> // CHECK: %[[VEC_RD_0:.*]] = vector.mask %[[MASK_2D]] { vector.transfer_read %[[ARG_0]][%[[C0_IDX]], %[[C0_IDX]]], %[[PV]] {in_bounds = [true, true]} : tensor, vector<4x[8]xf32> } : vector<4x[8]xi1> -> vector<4x[8]xf32> // CHECK: %[[PV:.*]] = ub.poison : f32 // CHECK: %[[MASK_1D:.*]] = vector.create_mask %[[DIM_A0_0]] : vector<4xi1> // CHECK: %[[VEC_RD_1:.*]] = vector.mask %[[MASK_1D]] { vector.transfer_read %[[ARG_1]][%[[C0_IDX]]], %[[PV]] {in_bounds = [true]} : tensor, vector<4xf32> } : vector<4xi1> -> vector<4xf32> // CHECK: %[[REDUCE:.*]] = vector.mask %[[MASK_2D]] { vector.multi_reduction , %[[VEC_RD_0]], %[[VEC_RD_1]] [1] : vector<4x[8]xf32> to vector<4xf32> } : vector<4x[8]xi1> -> vector<4xf32> // CHECK: %[[C0_IDX:.*]] = arith.constant 0 : index // CHECK: %{{.*}} = vector.mask %[[MASK_1D]] { vector.transfer_write %[[REDUCE]], %[[ARG_1]][%[[C0_IDX]]] {in_bounds = [true]} : vector<4xf32>, tensor } : vector<4xi1> -> tensor module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.vectorize %0 vector_sizes [4, [8]] : !transform.any_op transform.yield } } // ----- func.func @vectorize_dynamic_reduction_scalable_1d(%arg0: tensor, %arg1: tensor) -> tensor { %0 = linalg.reduce ins(%arg0 : tensor) outs(%arg1 : tensor) dimensions = [0] (%in: f32, %init: f32) { %0 = arith.addf %in, %init : f32 linalg.yield %0 : f32 } return %0 : tensor } // CHECK-LABEL: func.func @vectorize_dynamic_reduction_scalable_1d( // CHECK-SAME: %[[ARG_0:.*]]: tensor, %[[ARG_1:.*]]: tensor) -> tensor { // CHECK: %[[C0_IDX:.*]] = arith.constant 0 : index // CHECK: %[[DIM_A0_0:.*]] = tensor.dim %[[ARG_0]], %[[C0_IDX]] : tensor // CHECK: %[[C0_IDX:.*]] = arith.constant 0 : index // CHECK: %[[PV:.*]] = ub.poison : f32 // CHECK: %[[MASK:.*]] = vector.create_mask %[[DIM_A0_0]] : vector<[4]xi1> // CHECK: %[[VEC_RD_0:.*]] = vector.mask %[[MASK]] { vector.transfer_read %[[ARG_0]][%[[C0_IDX]]], %[[PV]] {in_bounds = [true]} : tensor, vector<[4]xf32> } : vector<[4]xi1> -> vector<[4]xf32> // CHECK: %[[PV:.*]] = ub.poison : f32 // CHECK: %[[VEC_RD_1:.*]] = vector.transfer_read %[[ARG_1]][], %[[PV]] : tensor, vector // CHECK: %[[ACC_f32:.*]] = vector.extract %[[VEC_RD_1]][] : f32 from vector // CHECK: %[[REDUCE:.*]] = vector.mask %[[MASK]] { vector.multi_reduction , %[[VEC_RD_0]], %[[ACC_f32]] [0] : vector<[4]xf32> to f32 } : vector<[4]xi1> -> f32 // CHECK: %[[VEC_f32:.*]] = vector.broadcast %[[REDUCE]] : f32 to vector // CHECK: %{{.*}} = vector.transfer_write %[[VEC_f32]], %[[ARG_1]][] : vector, tensor module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.reduce"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.vectorize %0 vector_sizes [[4]] : !transform.any_op transform.yield } } // ----- func.func @vectorize_dynamic_transpose_reduction(%arg0: tensor, %arg1: tensor) -> tensor { %0 = linalg.generic { indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>, affine_map<(d0, d1, d2) -> (d2, d1)>], iterator_types = ["reduction", "parallel", "parallel"] } ins(%arg0 : tensor) outs(%arg1 : tensor) { ^bb(%in: f32, %out: f32) : %0 = arith.addf %in, %out : f32 linalg.yield %0 : f32 } -> tensor return %0 : tensor } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.vectorize %0 vector_sizes [4, 8, 16] : !transform.any_op transform.yield } } // CHECK-LABEL: @vectorize_dynamic_transpose_reduction( // CHECK-SAME: %[[VAL_0:.*]]: tensor, // CHECK-SAME: %[[VAL_1:.*]]: tensor) -> tensor { // CHECK: %[[VAL_2:.*]] = arith.constant 0 : index // CHECK: %[[VAL_3:.*]] = tensor.dim %[[VAL_0]], %[[VAL_2]] : tensor // CHECK: %[[VAL_4:.*]] = arith.constant 1 : index // CHECK: %[[VAL_5:.*]] = tensor.dim %[[VAL_0]], %[[VAL_4]] : tensor // CHECK: %[[VAL_6:.*]] = arith.constant 2 : index // CHECK: %[[VAL_7:.*]] = tensor.dim %[[VAL_0]], %[[VAL_6]] : tensor // CHECK: %[[VAL_10:.*]] = vector.create_mask %[[VAL_3]], %[[VAL_5]], %[[VAL_7]] : vector<4x8x16xi1> // CHECK: %[[VAL_11:.*]] = vector.mask %[[VAL_10]] { vector.transfer_read %[[VAL_0]]{{.*}} {in_bounds = [true, true, true]} : tensor, vector<4x8x16xf32> } : vector<4x8x16xi1> -> vector<4x8x16xf32> // CHECK: %[[VAL_13:.*]] = vector.create_mask %[[VAL_7]], %[[VAL_5]] : vector<16x8xi1> // CHECK: %[[VAL_14:.*]] = vector.mask %[[VAL_13]] { vector.transfer_read %[[VAL_1]]{{.*}} {in_bounds = [true, true], permutation_map = #{{.*}}} : tensor, vector<8x16xf32> } : vector<16x8xi1> -> vector<8x16xf32> // CHECK: %[[VAL_15:.*]] = vector.mask %[[VAL_10]] { vector.multi_reduction , %[[VAL_11]], %[[VAL_14]] [0] : vector<4x8x16xf32> to vector<8x16xf32> } : vector<4x8x16xi1> -> vector<8x16xf32> // CHECK: %[[VAL_17:.*]] = vector.mask %[[VAL_13]] { vector.transfer_write %[[VAL_15]], %{{.*}} {in_bounds = [true, true], permutation_map = #{{.*}}} : vector<8x16xf32>, tensor } : vector<16x8xi1> -> tensor // ----- func.func @vectorize_dynamic_transpose_reduction_with_params(%arg0: tensor, %arg1: tensor) -> tensor { %0 = linalg.generic { indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>, affine_map<(d0, d1, d2) -> (d2, d1)>], iterator_types = ["reduction", "parallel", "parallel"] } ins(%arg0 : tensor) outs(%arg1 : tensor) { ^bb(%in: f32, %out: f32) : %0 = arith.addf %in, %out : f32 linalg.yield %0 : f32 } -> tensor return %0 : tensor } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op %vector_size_0 = transform.param.constant 4 : i64 -> !transform.param %vector_size_2 = transform.param.constant 16 : i64 -> !transform.param transform.structured.vectorize %0 vector_sizes [%vector_size_0, 8, %vector_size_2] : !transform.any_op, !transform.param, !transform.param transform.yield } } // CHECK-LABEL: @vectorize_dynamic_transpose_reduction_with_params( // CHECK-SAME: %[[VAL_0:.*]]: tensor, // CHECK-SAME: %[[VAL_1:.*]]: tensor) -> tensor { // CHECK: %[[VAL_2:.*]] = arith.constant 0 : index // CHECK: %[[VAL_3:.*]] = tensor.dim %[[VAL_0]], %[[VAL_2]] : tensor // CHECK: %[[VAL_4:.*]] = arith.constant 1 : index // CHECK: %[[VAL_5:.*]] = tensor.dim %[[VAL_0]], %[[VAL_4]] : tensor // CHECK: %[[VAL_6:.*]] = arith.constant 2 : index // CHECK: %[[VAL_7:.*]] = tensor.dim %[[VAL_0]], %[[VAL_6]] : tensor // CHECK: %[[VAL_10:.*]] = vector.create_mask %[[VAL_3]], %[[VAL_5]], %[[VAL_7]] : vector<4x8x16xi1> // CHECK: %[[VAL_11:.*]] = vector.mask %[[VAL_10]] { vector.transfer_read %[[VAL_0]]{{.*}} {in_bounds = [true, true, true]} : tensor, vector<4x8x16xf32> } : vector<4x8x16xi1> -> vector<4x8x16xf32> // CHECK: %[[VAL_13:.*]] = vector.create_mask %[[VAL_7]], %[[VAL_5]] : vector<16x8xi1> // CHECK: %[[VAL_14:.*]] = vector.mask %[[VAL_13]] { vector.transfer_read %[[VAL_1]]{{.*}} {in_bounds = [true, true], permutation_map = #{{.*}}} : tensor, vector<8x16xf32> } : vector<16x8xi1> -> vector<8x16xf32> // CHECK: %[[VAL_15:.*]] = vector.mask %[[VAL_10]] { vector.multi_reduction , %[[VAL_11]], %[[VAL_14]] [0] : vector<4x8x16xf32> to vector<8x16xf32> } : vector<4x8x16xi1> -> vector<8x16xf32> // CHECK: %[[VAL_17:.*]] = vector.mask %[[VAL_13]] { vector.transfer_write %[[VAL_15]], %{{.*}} {in_bounds = [true, true], permutation_map = #{{.*}}} : vector<8x16xf32>, tensor } : vector<16x8xi1> -> tensor // ----- func.func @vectorize_partial_dynamic_identity(%arg0: tensor<8x?xf32>, %arg1: tensor<8x?xf32>, %arg2: tensor<8x?xf32>) -> tensor<8x?xf32> { %0 = linalg.generic { indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>], iterator_types = ["parallel", "parallel"] } ins(%arg0, %arg1 : tensor<8x?xf32>, tensor<8x?xf32>) outs(%arg2 : tensor<8x?xf32>) { ^bb(%in0: f32, %in1: f32, %out: f32) : %0 = arith.addf %in0, %in1 : f32 linalg.yield %0 : f32 } -> tensor<8x?xf32> return %0 : tensor<8x?xf32> } // CHECK-LABEL: func.func @vectorize_partial_dynamic_identity( // CHECK-SAME: %[[VAL_0:.*]]: tensor<8x?xf32>, %[[VAL_1:.*]]: tensor<8x?xf32>, %[[VAL_2:.*]]: tensor<8x?xf32>) -> tensor<8x?xf32> { // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 1 : index // CHECK-DAG: %[[VAL_4:.*]] = tensor.dim %[[VAL_0]], %[[VAL_3]] : tensor<8x?xf32> // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_6:.*]] = ub.poison : f32 // CHECK-DAG: %[[VAL_7:.*]] = arith.constant 8 : index // CHECK: %[[VAL_8:.*]] = vector.create_mask %[[VAL_7]], %[[VAL_4]] : vector<8x32xi1> // CHECK: %[[VAL_9:.*]] = vector.mask %[[VAL_8]] { vector.transfer_read %[[VAL_0]][%[[VAL_5]], %[[VAL_5]]], %[[VAL_6]] {in_bounds = [true, true]} : tensor<8x?xf32>, vector<8x32xf32> } : vector<8x32xi1> -> vector<8x32xf32> // CHECK: %[[VAL_10:.*]] = ub.poison : f32 // CHECK: %[[VAL_11:.*]] = vector.mask %[[VAL_8]] { vector.transfer_read %[[VAL_1]][%[[VAL_5]], %[[VAL_5]]], %[[VAL_10]] {in_bounds = [true, true]} : tensor<8x?xf32>, vector<8x32xf32> } : vector<8x32xi1> -> vector<8x32xf32> // CHECK: %[[VAL_12:.*]] = ub.poison : f32 // CHECK: %[[VAL_13:.*]] = vector.mask %[[VAL_8]] { vector.transfer_read %[[VAL_2]][%[[VAL_5]], %[[VAL_5]]], %[[VAL_12]] {in_bounds = [true, true]} : tensor<8x?xf32>, vector<8x32xf32> } : vector<8x32xi1> -> vector<8x32xf32> // CHECK: %[[VAL_14:.*]] = arith.addf %[[VAL_9]], %[[VAL_11]] : vector<8x32xf32> // CHECK: %[[VAL_15:.*]] = arith.constant 0 : index // CHECK: %[[VAL_16:.*]] = vector.mask %[[VAL_8]] { vector.transfer_write %[[VAL_14]], %[[VAL_2]][%[[VAL_15]], %[[VAL_15]]] {in_bounds = [true, true]} : vector<8x32xf32>, tensor<8x?xf32> } : vector<8x32xi1> -> tensor<8x?xf32> module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.vectorize %0 vector_sizes [8, 32] : !transform.any_op transform.yield } } // ----- func.func @vectorize_partial_dynamic_identity_scalable(%arg0: tensor<8x?xf32>, %arg1: tensor<8x?xf32>, %arg2: tensor<8x?xf32>) -> tensor<8x?xf32> { %0 = linalg.generic { indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>], iterator_types = ["parallel", "parallel"] } ins(%arg0, %arg1 : tensor<8x?xf32>, tensor<8x?xf32>) outs(%arg2 : tensor<8x?xf32>) { ^bb(%in0: f32, %in1: f32, %out: f32) : %0 = arith.addf %in0, %in1 : f32 linalg.yield %0 : f32 } -> tensor<8x?xf32> return %0 : tensor<8x?xf32> } // CHECK-LABEL: func.func @vectorize_partial_dynamic_identity_scalable // CHECK-SAME: %[[VAL_0:.*]]: tensor<8x?xf32>, %[[VAL_1:.*]]: tensor<8x?xf32>, %[[VAL_2:.*]]: tensor<8x?xf32>) -> tensor<8x?xf32> { // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 1 : index // CHECK-DAG: %[[VAL_4:.*]] = tensor.dim %[[VAL_0]], %[[VAL_3]] : tensor<8x?xf32> // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_6:.*]] = ub.poison : f32 // CHECK-DAG: %[[VAL_7:.*]] = arith.constant 8 : index // CHECK: %[[VAL_8:.*]] = vector.create_mask %[[VAL_7]], %[[VAL_4]] : vector<8x[32]xi1> // CHECK: %[[VAL_9:.*]] = vector.mask %[[VAL_8]] { vector.transfer_read %[[VAL_0]][%[[VAL_5]], %[[VAL_5]]], %[[VAL_6]] {in_bounds = [true, true]} : tensor<8x?xf32>, vector<8x[32]xf32> } : vector<8x[32]xi1> -> vector<8x[32]xf32> // CHECK: %[[VAL_10:.*]] = ub.poison : f32 // CHECK: %[[VAL_11:.*]] = vector.mask %[[VAL_8]] { vector.transfer_read %[[VAL_1]][%[[VAL_5]], %[[VAL_5]]], %[[VAL_10]] {in_bounds = [true, true]} : tensor<8x?xf32>, vector<8x[32]xf32> } : vector<8x[32]xi1> -> vector<8x[32]xf32> // CHECK: %[[VAL_12:.*]] = ub.poison : f32 // CHECK: %[[VAL_13:.*]] = vector.mask %[[VAL_8]] { vector.transfer_read %[[VAL_2]][%[[VAL_5]], %[[VAL_5]]], %[[VAL_12]] {in_bounds = [true, true]} : tensor<8x?xf32>, vector<8x[32]xf32> } : vector<8x[32]xi1> -> vector<8x[32]xf32> // CHECK: %[[VAL_14:.*]] = arith.addf %[[VAL_9]], %[[VAL_11]] : vector<8x[32]xf32> // CHECK: %[[VAL_15:.*]] = arith.constant 0 : index // CHECK: %[[VAL_16:.*]] = vector.mask %[[VAL_8]] { vector.transfer_write %[[VAL_14]], %[[VAL_2]][%[[VAL_15]], %[[VAL_15]]] {in_bounds = [true, true]} : vector<8x[32]xf32>, tensor<8x?xf32> } : vector<8x[32]xi1> -> tensor<8x?xf32> module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.vectorize %0 vector_sizes [8, [32]] : !transform.any_op transform.yield } } // ----- func.func @do_not_generate_masks(%arg0: tensor<8x32xf32>, %arg1: tensor<8x32xf32>, %arg2: tensor<8x32xf32>) -> tensor<8x32xf32> { %0 = linalg.generic { indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>], iterator_types = ["parallel", "parallel"] } ins(%arg0, %arg1 : tensor<8x32xf32>, tensor<8x32xf32>) outs(%arg2 : tensor<8x32xf32>) { ^bb(%in0: f32, %in1: f32, %out: f32) : %0 = arith.addf %in0, %in1 : f32 linalg.yield %0 : f32 } -> tensor<8x32xf32> return %0 : tensor<8x32xf32> } // CHECK-LABEL: func.func @do_not_generate_masks // CHECK-NOT: vector.mask module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.vectorize %0 vector_sizes [8, 32] : !transform.any_op transform.yield } } // ----- func.func @vectorize_static_shape_with_mask(%arg0: tensor<8x30xf32>, %arg1: tensor<8x30xf32>, %arg2: tensor<8x30xf32>) -> tensor<8x30xf32> { %0 = linalg.generic { indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>], iterator_types = ["parallel", "parallel"] } ins(%arg0, %arg1 : tensor<8x30xf32>, tensor<8x30xf32>) outs(%arg2 : tensor<8x30xf32>) { ^bb(%in0: f32, %in1: f32, %out: f32) : %0 = arith.addf %in0, %in1 : f32 linalg.yield %0 : f32 } -> tensor<8x30xf32> return %0 : tensor<8x30xf32> } // CHECK-LABEL: func.func @vectorize_static_shape_with_mask( // CHECK-SAME: %[[VAL_0:.*]]: tensor<8x30xf32>, %[[VAL_1:.*]]: tensor<8x30xf32>, %[[VAL_2:.*]]: tensor<8x30xf32>) -> tensor<8x30xf32> { // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_4:.*]] = ub.poison : f32 // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 8 : index // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 30 : index // CHECK: %[[VAL_7:.*]] = vector.create_mask %[[VAL_5]], %[[VAL_6]] : vector<8x32xi1> // CHECK: %[[VAL_8:.*]] = vector.mask %[[VAL_7]] { vector.transfer_read %[[VAL_0]][%[[VAL_3]], %[[VAL_3]]], %[[VAL_4]] {in_bounds = [true, true]} : tensor<8x30xf32>, vector<8x32xf32> } : vector<8x32xi1> -> vector<8x32xf32> // CHECK: %[[VAL_9:.*]] = ub.poison : f32 // CHECK: %[[VAL_10:.*]] = vector.mask %[[VAL_7]] { vector.transfer_read %[[VAL_1]][%[[VAL_3]], %[[VAL_3]]], %[[VAL_9]] {in_bounds = [true, true]} : tensor<8x30xf32>, vector<8x32xf32> } : vector<8x32xi1> -> vector<8x32xf32> // CHECK: %[[VAL_11:.*]] = ub.poison : f32 // CHECK: %[[VAL_12:.*]] = vector.mask %[[VAL_7]] { vector.transfer_read %[[VAL_2]][%[[VAL_3]], %[[VAL_3]]], %[[VAL_11]] {in_bounds = [true, true]} : tensor<8x30xf32>, vector<8x32xf32> } : vector<8x32xi1> -> vector<8x32xf32> // CHECK: %[[VAL_13:.*]] = arith.addf %[[VAL_8]], %[[VAL_10]] : vector<8x32xf32> // CHECK: %[[VAL_14:.*]] = arith.constant 0 : index // CHECK: %[[VAL_15:.*]] = vector.mask %[[VAL_7]] { vector.transfer_write %[[VAL_13]], %[[VAL_2]][%[[VAL_14]], %[[VAL_14]]] {in_bounds = [true, true]} : vector<8x32xf32>, tensor<8x30xf32> } : vector<8x32xi1> -> tensor<8x30xf32> module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.vectorize %0 vector_sizes [8, 32] : !transform.any_op transform.yield } } // ----- func.func @vectorize_static_shape_with_mask_scalable(%arg0: tensor<8x30xf32>, %arg1: tensor<8x30xf32>, %arg2: tensor<8x30xf32>) -> tensor<8x30xf32> { %0 = linalg.generic { indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>], iterator_types = ["parallel", "parallel"] } ins(%arg0, %arg1 : tensor<8x30xf32>, tensor<8x30xf32>) outs(%arg2 : tensor<8x30xf32>) { ^bb(%in0: f32, %in1: f32, %out: f32) : %0 = arith.addf %in0, %in1 : f32 linalg.yield %0 : f32 } -> tensor<8x30xf32> return %0 : tensor<8x30xf32> } // CHECK-LABEL: func.func @vectorize_static_shape_with_mask_scalable( // CHECK-SAME: %[[VAL_0:.*]]: tensor<8x30xf32>, %[[VAL_1:.*]]: tensor<8x30xf32>, %[[VAL_2:.*]]: tensor<8x30xf32>) -> tensor<8x30xf32> { // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_4:.*]] = ub.poison : f32 // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 8 : index // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 30 : index // CHECK: %[[VAL_7:.*]] = vector.create_mask %[[VAL_5]], %[[VAL_6]] : vector<8x[32]xi1> // CHECK: %[[VAL_8:.*]] = vector.mask %[[VAL_7]] { vector.transfer_read %[[VAL_0]][%[[VAL_3]], %[[VAL_3]]], %[[VAL_4]] {in_bounds = [true, true]} : tensor<8x30xf32>, vector<8x[32]xf32> } : vector<8x[32]xi1> -> vector<8x[32]xf32> // CHECK: %[[VAL_9:.*]] = ub.poison : f32 // CHECK: %[[VAL_10:.*]] = vector.mask %[[VAL_7]] { vector.transfer_read %[[VAL_1]][%[[VAL_3]], %[[VAL_3]]], %[[VAL_9]] {in_bounds = [true, true]} : tensor<8x30xf32>, vector<8x[32]xf32> } : vector<8x[32]xi1> -> vector<8x[32]xf32> // CHECK: %[[VAL_11:.*]] = ub.poison : f32 // CHECK: %[[VAL_12:.*]] = vector.mask %[[VAL_7]] { vector.transfer_read %[[VAL_2]][%[[VAL_3]], %[[VAL_3]]], %[[VAL_11]] {in_bounds = [true, true]} : tensor<8x30xf32>, vector<8x[32]xf32> } : vector<8x[32]xi1> -> vector<8x[32]xf32> // CHECK: %[[VAL_13:.*]] = arith.addf %[[VAL_8]], %[[VAL_10]] : vector<8x[32]xf32> // CHECK: %[[VAL_14:.*]] = arith.constant 0 : index // CHECK: %[[VAL_15:.*]] = vector.mask %[[VAL_7]] { vector.transfer_write %[[VAL_13]], %[[VAL_2]][%[[VAL_14]], %[[VAL_14]]] {in_bounds = [true, true]} : vector<8x[32]xf32>, tensor<8x30xf32> } : vector<8x[32]xi1> -> tensor<8x30xf32> module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.vectorize %0 vector_sizes [8, [32]] : !transform.any_op transform.yield } } // ----- ///---------------------------------------------------------------------------------------- /// Tests for linalg.matvec ///---------------------------------------------------------------------------------------- // Scalable _reduction_ dimension. func.func @vectorize_dynamic_matvec_trailing_reduction_dim(%arg0: tensor, %arg1: tensor, %arg2: tensor) { linalg.matvec ins(%arg0, %arg1 : tensor, tensor) outs(%arg2 : tensor) -> tensor return } // CHECK-LABEL: func.func @vectorize_dynamic_matvec_trailing_reduction_dim( // CHECK-SAME: %[[ARG_0:.*]]: tensor, %[[ARG_1:.*]]: tensor, %[[ARG_2:.*]]: tensor) { // CHECK: %[[C0_idx:.*]] = arith.constant 0 : index // CHECK: %[[DIM_A0_0:.*]] = tensor.dim %[[ARG_0]], %[[C0_idx]] : tensor // CHECK: %[[C1_idx:.*]] = arith.constant 1 : index // CHECK: %[[DIM_A0_1:.*]] = tensor.dim %[[ARG_0]], %[[C1_idx]] : tensor // CHECK: %[[C0_idx:.*]] = arith.constant 0 : index // CHECK: %[[PV:.*]] = ub.poison : f32 // CHECK: %[[MASK_2d:.*]] = vector.create_mask %[[DIM_A0_0]], %[[DIM_A0_1]] : vector<4x[4]xi1> // CHECK: %[[VEC_RD_0:.*]] = vector.mask %[[MASK_2d]] { vector.transfer_read %[[ARG_0]][%[[C0_idx]], %[[C0_idx]]], %[[PV]] {in_bounds = [true, true]} : tensor, vector<4x[4]xf32> } : vector<4x[4]xi1> -> vector<4x[4]xf32> // CHECK: %[[PV:.*]] = ub.poison : f32 // CHECK: %[[MASK_d1:.*]] = vector.create_mask %[[DIM_A0_1]] : vector<[4]xi1> // CHECK: %[[VEC_RD_1:.*]] = vector.mask %[[MASK_d1]] { vector.transfer_read %[[ARG_1]][%[[C0_idx]]], %[[PV]] {in_bounds = [true, true], permutation_map = #map} : tensor, vector<4x[4]xf32> } : vector<[4]xi1> -> vector<4x[4]xf32> // CHECK: %[[PV:.*]] = ub.poison : f32 // CHECK: %[[MASK_d2:.*]] = vector.create_mask %[[DIM_A0_0]] : vector<4xi1> // CHECK: %[[VEC_RD_2:.*]] = vector.mask %[[MASK_d2]] { vector.transfer_read %[[ARG_2]][%[[C0_idx]]], %[[PV]] {in_bounds = [true]} : tensor, vector<4xf32> } : vector<4xi1> -> vector<4xf32> // CHECK: %[[MUL:.*]] = arith.mulf %[[VEC_RD_0:.*]], %[[VEC_RD_1:.*]] : vector<4x[4]xf32> // CHECK: %[[REDUCE:.*]] = vector.mask %[[MASK_2d]] { vector.multi_reduction , %[[MUL]], %[[VEC_RD_2]] [1] : vector<4x[4]xf32> to vector<4xf32> } : vector<4x[4]xi1> -> vector<4xf32> // CHECK: %[[C0_idx:.*]] = arith.constant 0 : index // CHECK: %{{.*}} = vector.mask %[[MASK_d2]] { vector.transfer_write %[[REDUCE]], %[[ARG_2]][%[[C0_idx]]] {in_bounds = [true]} : vector<4xf32>, tensor } : vector<4xi1> -> tensor module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.matvec"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.vectorize %0 vector_sizes [4, [4]] : !transform.any_op transform.yield } } // ----- // Scalable _parallel_ dimension. func.func @vectorize_dynamic_matvec_trailing_reduction_dim(%arg0: tensor, %arg1: tensor, %arg2: tensor) -> tensor{ %0 = linalg.matvec ins(%arg0, %arg1 : tensor, tensor) outs(%arg2 : tensor) -> tensor return %0 : tensor } // CHECK-LABEL: func.func @vectorize_dynamic_matvec_trailing_reduction_dim( // CHECK-SAME: %[[ARG_0:.*]]: tensor, %[[ARG_1:.*]]: tensor, %[[ARG_2:.*]]: tensor) -> tensor { // CHECK: %[[C0_idx:.*]] = arith.constant 0 : index // CHECK: %[[DIM_A0_0:.*]] = tensor.dim %[[ARG_0]], %[[C0_idx]] : tensor // CHECK: %[[C1_idx:.*]] = arith.constant 1 : index // CHECK: %[[DIM_A0_1:.*]] = tensor.dim %[[ARG_0]], %[[C1_idx]] : tensor // CHECK: %[[C0_idx:.*]] = arith.constant 0 : index // CHECK: %[[PV:.*]] = ub.poison : f32 // CHECK: %[[MASK_2d:.*]] = vector.create_mask %[[DIM_A0_0]], %[[DIM_A0_1]] : vector<[4]x4xi1> // CHECK: %[[VEC_RD_0:.*]] = vector.mask %[[MASK_2d]] { vector.transfer_read %[[ARG_0]][%[[C0_idx]], %[[C0_idx]]], %[[PV]] {in_bounds = [true, true]} : tensor, vector<[4]x4xf32> } : vector<[4]x4xi1> -> vector<[4]x4xf32> // CHECK: %[[PV:.*]] = ub.poison : f32 // CHECK: %[[MASK_d1:.*]] = vector.create_mask %[[DIM_A0_1]] : vector<4xi1> // CHECK: %[[VEC_RD_1:.*]] = vector.mask %[[MASK_d1]] { vector.transfer_read %[[ARG_1]][%[[C0_idx]]], %[[PV]] {in_bounds = [true, true], permutation_map = #map} : tensor, vector<[4]x4xf32> } : vector<4xi1> -> vector<[4]x4xf32> // CHECK: %[[PV:.*]] = ub.poison : f32 // CHECK: %[[MASK_d2:.*]] = vector.create_mask %[[DIM_A0_0]] : vector<[4]xi1> // CHECK: %[[VEC_RD_2:.*]] = vector.mask %[[MASK_d2]] { vector.transfer_read %[[ARG_2]][%[[C0_idx]]], %[[PV]] {in_bounds = [true]} : tensor, vector<[4]xf32> } : vector<[4]xi1> -> vector<[4]xf32> // CHECK: %[[MUL:.*]] = arith.mulf %[[VEC_RD_0:.*]], %[[VEC_RD_1:.*]] : vector<[4]x4xf32> // CHECK: %[[REDUCE:.*]] = vector.mask %[[MASK_2d]] { vector.multi_reduction , %[[MUL]], %[[VEC_RD_2]] [1] : vector<[4]x4xf32> to vector<[4]xf32> } : vector<[4]x4xi1> -> vector<[4]xf32> // CHECK: %[[C0_idx:.*]] = arith.constant 0 : index // CHECK: %{{.*}} = vector.mask %[[MASK_d2]] { vector.transfer_write %[[REDUCE]], %[[ARG_2]][%[[C0_idx]]] {in_bounds = [true]} : vector<[4]xf32>, tensor } : vector<[4]xi1> -> tensor module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.matvec"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.vectorize %0 vector_sizes [[4], 4] : !transform.any_op transform.yield } } // ----- ///---------------------------------------------------------------------------------------- /// Tests for linalg.index ///---------------------------------------------------------------------------------------- #map = affine_map<(d0) -> (d0)> func.func @vectorize_linalg_index_scalable(%dest: tensor) -> tensor { %0 = linalg.generic { indexing_maps = [#map], iterator_types = ["parallel"] } outs(%dest : tensor) { ^bb0(%in: index): %1 = linalg.index 0 : index linalg.yield %1: index } -> tensor return %0 : tensor } // CHECK-LABEL: func.func @vectorize_linalg_index_scalable( // CHECK-SAME: %[[DEST:.*]]: tensor) -> tensor { // CHECK: %[[C0:.*]] = arith.constant 0 : index // CHECK: %[[D0:.*]] = tensor.dim %[[DEST]], %[[C0]] : tensor // CHECK: %[[C0_1:.*]] = arith.constant 0 : index // CHECK: %[[PV:.*]] = ub.poison : index // CHECK: %[[MASK:.*]] = vector.create_mask %[[D0]] : vector<[4]xi1> // TODO: This xfer_read is not used - avoid creating it. // CHECK: %[[READ:.*]] = vector.mask %[[MASK]] { vector.transfer_read %[[DEST]]{{\[}}%[[C0_1]]], %[[PV]] {in_bounds = [true]} : tensor, vector<[4]xindex> } : vector<[4]xi1> -> vector<[4]xindex> // CHECK: %[[STEP:.*]] = vector.step : vector<[4]xindex> // CHECK: %[[C0_3:.*]] = arith.constant 0 : index // CHECK: %[[WRITE:.*]] = vector.mask %[[MASK]] { vector.transfer_write %[[STEP]], %[[DEST]]{{\[}}%[[C0_3]]] {in_bounds = [true]} : vector<[4]xindex>, tensor } : vector<[4]xi1> -> tensor // CHECK: return %[[WRITE]] : tensor module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.vectorize %0 vector_sizes [[4]] : !transform.any_op transform.yield } } ///---------------------------------------------------------------------------------------- /// Tests for other Ops ///---------------------------------------------------------------------------------------- // ----- func.func @vectorize_dynamic_fill(%A : tensor, %arg0 : f32) -> tensor { %0 = linalg.fill ins(%arg0 : f32) outs(%A : tensor) -> tensor return %0 : tensor } // CHECK-LABEL: func.func @vectorize_dynamic_fill // CHECK: %[[DIM0:.*]] = tensor.dim // CHECK: %[[DIM1:.*]] = tensor.dim // CHECK: %[[MASK:.*]] = vector.create_mask %[[DIM0]], %[[DIM1]] : vector<8x16xi1> // CHECK: %[[BCAST:.*]] = vector.broadcast %{{.*}} : f32 to vector<8x16xf32> // CHECK: vector.mask %[[MASK]] { vector.transfer_write %[[BCAST]], {{.*}} {in_bounds = [true, true]} : vector<8x16xf32>, tensor } : vector<8x16xi1> module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.fill"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.vectorize %0 vector_sizes [8, 16] : !transform.any_op transform.yield } } // ----- // NOTE: Often, non-trailing scalable sizes are problematic - there are no // "scalable" arrays of vectors at the LLVM level (multi-dim vectors are // decomposed into arrays of aggregates). However, the trailing dim in this // case is 1 and that can be folded away later. // NOTE: This is similar to the example above, but the trailing dim was set to // 1 to make it foldable + vectorizable. func.func @vectorize_dynamic_fill_scalable(%A : tensor, %arg0 : f32) -> tensor { %0 = linalg.fill ins(%arg0 : f32) outs(%A : tensor) -> tensor return %0 : tensor } // CHECK-LABEL: func.func @vectorize_dynamic_fill_scalable // CHECK: %[[DIM0:.*]] = tensor.dim // CHECK: %[[DIM1:.*]] = tensor.dim // CHECK: %[[MASK:.*]] = vector.create_mask %[[DIM0]], %[[DIM1]] : vector<[8]x1xi1> // CHECK: %[[BCAST:.*]] = vector.broadcast %{{.*}} : f32 to vector<[8]x1xf32> // CHECK: vector.mask %[[MASK]] { vector.transfer_write %[[BCAST]], {{.*}} {in_bounds = [true, true]} : vector<[8]x1xf32>, tensor } : vector<[8]x1xi1> module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.fill"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.vectorize %0 vector_sizes [[8], 1] : !transform.any_op transform.yield } } // ----- // CHECK: #[[MAP:.*]] = affine_map<(d0, d1) -> (d1, d0)> // CHECK: func @test_masked_vectorize_linalg_transpose func.func @test_masked_vectorize_linalg_transpose(%arg0: tensor, %arg1: tensor) -> tensor { // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index // CHECK-DAG: %[[D0:.*]] = tensor.dim %arg0, %[[C0]] // CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index // CHECK-DAG: %[[D1:.*]] = tensor.dim %arg0, %[[C1]] // CHECK: %[[MASK0:.*]] = vector.create_mask %[[D0]], %[[D1]] // CHECK: %[[LOAD:.*]] = vector.mask %[[MASK0]] { vector.transfer_read %arg0{{.+}} permutation_map = #[[MAP]]{{.+}} } // CHECK-SAME: vector<4x2xi1> -> vector<2x4xf32> // CHECK: %[[MASK1:.*]] = vector.create_mask %[[D1]], %[[D0]] // CHECK: %[[WRITE:.*]] = vector.mask %[[MASK1]] { vector.transfer_write %[[LOAD]], %arg1{{.+}} } // CHECK-SAME: vector<2x4xi1> -> tensor // CHECK: return %[[WRITE]] %0 = linalg.transpose ins(%arg0 : tensor) outs(%arg1 : tensor) permutation = [1, 0] return %0 : tensor } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.transpose"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.vectorize %0 vector_sizes [2, 4] : !transform.any_op transform.yield } } // ----- // CHECK-LABEL: func @test_masked_vectorize_linalg_copy func.func @test_masked_vectorize_linalg_copy(%A : memref, %B : memref) { // CHECK: %[[c0:.*]] = arith.constant 0 : index // CHECK: %[[d0:.*]] = memref.dim %{{.*}}, %[[c0]] : memref // CHECK: %[[c1:.*]] = arith.constant 1 : index // CHECK: %[[d1:.*]] = memref.dim %{{.*}}, %[[c1]] : memref // CHECK: %[[mask:.*]] = vector.create_mask %[[d0]], %[[d1]] : vector<2x4xi1> // CHECK: vector.mask %[[mask]] {{.*}} vector.transfer_read %{{.*}} {in_bounds = [true, true]} : memref, vector<2x4xf32> } : vector<2x4xi1> -> vector<2x4xf32> // CHECK: vector.mask %[[mask]] {{.*}} vector.transfer_write %{{.*}} {in_bounds = [true, true]} : vector<2x4xf32>, memref } : vector<2x4xi1> linalg.copy ins(%A : memref) outs(%B : memref) return } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.copy"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.vectorize %0 vector_sizes [2, 4] : !transform.any_op transform.yield } } // ----- // Input identical as the test in vectorization-with-patterns.mlir. Output is // different - vector sizes are inferred (rather than user-specified) and hence // masking was used. func.func @test_vectorize_pack(%arg0: tensor<32x8x16xf32>, %arg1: tensor<4x1x32x16x2xf32>) -> tensor<4x1x32x16x2xf32> { %pack = linalg.pack %arg0 outer_dims_perm = [1, 2, 0] inner_dims_pos = [2, 1] inner_tiles = [16, 2] into %arg1 : tensor<32x8x16xf32> -> tensor<4x1x32x16x2xf32> return %pack : tensor<4x1x32x16x2xf32> } // CHECK-DAG: %[[cst:.*]] = arith.constant 0.000000e+00 : f32 // CHECK-DAG: %[[c0:.*]] = arith.constant 0 : index // CHECK: %[[read:.*]] = vector.transfer_read %{{.*}}[%[[c0]], %[[c0]], %[[c0]]], %[[cst]] // CHECK-SAME: {in_bounds = [true, true, true]} : tensor<32x8x16xf32>, vector<32x8x16xf32> // CHECK: %[[shape_cast:.*]] = vector.shape_cast %[[read]] : vector<32x8x16xf32> to vector<32x4x2x1x16xf32> // CHECK: %[[transpose:.*]] = vector.transpose %[[shape_cast]], [1, 3, 0, 4, 2] : vector<32x4x2x1x16xf32> to vector<4x1x32x16x2xf32> // CHECK-DAG: %[[c0_1:.*]] = arith.constant 0 : index // CHECK-DAG: %[[empty:.*]] = tensor.empty() : tensor<4x1x32x16x2xf32> // CHECK: %[[write:.*]] = vector.transfer_write %[[transpose]], %[[empty]][%[[c0_1]], %[[c0_1]], %[[c0_1]], %[[c0_1]], %[[c0_1]]] // CHECK-SAME: {in_bounds = [true, true, true, true, true]} : vector<4x1x32x16x2xf32>, tensor<4x1x32x16x2xf32> // CHECK: return %[[write]] : tensor<4x1x32x16x2xf32> module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.pack"]} in %arg0 : (!transform.any_op) -> !transform.any_op transform.structured.vectorize %0 vector_sizes [4, 1, 32] : !transform.any_op transform.yield } } // ----- // Input identical as the test in vectorization-with-patterns.mlir. Output is // different - vector sizes are inferred (rather than user-specified) and hence // masking was used. func.func @test_vectorize_padded_pack(%arg0: tensor<32x7x15xf32>, %arg1: tensor<32x4x1x16x2xf32>) -> tensor<32x4x1x16x2xf32> { %pad = arith.constant 0.000000e+00 : f32 %pack = linalg.pack %arg0 padding_value(%pad : f32) inner_dims_pos = [2, 1] inner_tiles = [16, 2] into %arg1 : tensor<32x7x15xf32> -> tensor<32x4x1x16x2xf32> return %pack : tensor<32x4x1x16x2xf32> } // CHECK-DAG: %[[cst:.*]] = arith.constant 0.000000e+00 : f32 // CHECK-DAG: %[[c0:.*]] = arith.constant 0 : index // CHECK-DAG: %[[c32:.*]] = arith.constant 32 : index // CHECK-DAG: %[[c7:.*]] = arith.constant 7 : index // CHECK-DAG: %[[c15:.*]] = arith.constant 15 : index // CHECK: %[[mask:.*]] = vector.create_mask %[[c32]], %[[c7]], %[[c15]] : vector<32x8x16xi1> // CHECK: %[[masked_read:.*]] = vector.mask %[[mask]] { // CHECK-SAME: vector.transfer_read %{{.*}}[%[[c0]], %[[c0]], %[[c0]]], %[[cst]] // CHECK-SAME: {in_bounds = [true, true, true]} : tensor<32x7x15xf32>, vector<32x8x16xf32> // CHECK-SAME: } : vector<32x8x16xi1> -> vector<32x8x16xf32> // CHECK: %[[shape_cast:.*]] = vector.shape_cast %[[masked_read]] : vector<32x8x16xf32> to vector<32x4x2x1x16xf32> // CHECK: %[[transpose:.*]] = vector.transpose %[[shape_cast]], [0, 1, 3, 4, 2] : vector<32x4x2x1x16xf32> to vector<32x4x1x16x2xf32> // CHECK-DAG: %[[c0_1:.*]] = arith.constant 0 : index // CHECK-DAG: %[[empty:.*]] = tensor.empty() : tensor<32x4x1x16x2xf32> // CHECK: %[[write:.*]] = vector.transfer_write %[[transpose]], %[[empty]][%[[c0_1]], %[[c0_1]], %[[c0_1]], %[[c0_1]], %[[c0_1]]] // CHECK-SAME: {in_bounds = [true, true, true, true, true]} : vector<32x4x1x16x2xf32>, tensor<32x4x1x16x2xf32> // CHECK: return %[[write]] : tensor<32x4x1x16x2xf32> module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.pack"]} in %arg0 : (!transform.any_op) -> !transform.any_op transform.structured.vectorize %0 vector_sizes [32, 4, 1] : !transform.any_op transform.yield } } // ----- func.func @test_vectorize_dynamic_pack(%arg0: tensor, %arg1: tensor) -> tensor { %pack = linalg.pack %arg0 inner_dims_pos = [1, 0] inner_tiles = [16, 2] into %arg1 : tensor -> tensor return %pack : tensor } // CHECK-DAG: %[[cst:.*]] = arith.constant 0.000000e+00 : f32 // CHECK-DAG: %[[c0:.*]] = arith.constant 0 : index // CHECK-DAG: %[[c1:.*]] = arith.constant 1 : index // CHECK-DAG: %[[d0:.*]] = tensor.dim {{.*}} %[[c0]] : tensor // CHECK-DAG: %[[d1:.*]] = tensor.dim {{.*}} %[[c1]] : tensor // CHECK-DAG: %[[c0_1:.*]] = arith.constant 0 : index // CHECK-DAG: %[[c0_0:.*]] = arith.constant 0 : index // CHECK-DAG: %[[c1_0:.*]] = arith.constant 1 : index // CHECK-DAG: %[[d0_0:.*]] = tensor.dim {{.*}} %[[c0_0]] : tensor // CHECK-DAG: %[[d1_0:.*]] = tensor.dim {{.*}} %[[c1_0]] : tensor // CHECK: %[[mask:.*]] = vector.create_mask %[[d0_0]], %[[d1_0]] : vector<8x16xi1> // CHECK: %[[masked_read:.*]] = vector.mask %[[mask]] { // CHECK-SAME: vector.transfer_read %{{.*}}[%[[c0_1]], %[[c0_1]]], %[[cst]] // CHECK-SAME: {in_bounds = [true, true]} : tensor, vector<8x16xf32> // CHECK-SAME: } : vector<8x16xi1> -> vector<8x16xf32> // CHECK: %[[shape_cast:.*]] = vector.shape_cast %[[masked_read]] : vector<8x16xf32> to vector<4x2x1x16xf32> // CHECK: %[[transpose:.*]] = vector.transpose %[[shape_cast]], [0, 2, 3, 1] : vector<4x2x1x16xf32> to vector<4x1x16x2xf32> // CHECK-DAG: %[[c0_2:.*]] = arith.constant 0 : index // CHECK-DAG: %[[c16:.*]] = arith.constant 16 : index // CHECK-DAG: %[[c2:.*]] = arith.constant 2 : index // CHECK-DAG: %[[empty:.*]] = tensor.empty(%[[d0]], %[[d1]]) : tensor // CHECK-DAG: %[[d2:.*]] = tensor.dim %[[empty]], {{.*}} : tensor // CHECK-DAG: %[[d3:.*]] = tensor.dim %[[empty]], {{.*}} : tensor // CHECK: %[[mask_0:.*]] = vector.create_mask %[[d2]], %[[d3]], %[[c16]], %[[c2]] : vector<4x1x16x2xi1> // CHECK: %[[masked_write:.*]] = vector.mask %[[mask_0]] { // CHECK-SAME: vector.transfer_write %[[transpose]], %[[empty]][%[[c0_2]], %[[c0_2]], %[[c0_2]], %[[c0_2]]] // CHECK-SAME: {in_bounds = [true, true, true, true]} : vector<4x1x16x2xf32>, tensor // CHECK: return %[[masked_write]] : tensor module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.pack"]} in %arg0 : (!transform.any_op) -> !transform.any_op transform.structured.vectorize %0 vector_sizes [4, 1] : !transform.any_op transform.yield } } // ----- func.func @matmul(%A: memref, %B: memref, %C: memref) { linalg.matmul ins(%A, %B: memref, memref) outs(%C: memref) return } // CHECK-LABEL: func.func @matmul( // CHECK-SAME: %[[A:.*]]: memref, %[[B:.*]]: memref, %[[C:.*]]: memref) { // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_4:.*]] = memref.dim %[[A]], %[[VAL_3]] : memref // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 1 : index // CHECK-DAG: %[[VAL_6:.*]] = memref.dim %[[B]], %[[VAL_5]] : memref // CHECK-DAG: %[[VAL_7:.*]] = arith.constant 1 : index // CHECK-DAG: %[[VAL_8:.*]] = memref.dim %[[A]], %[[VAL_7]] : memref // CHECK: %[[MASK_A:.*]] = vector.create_mask %[[VAL_4]], %[[VAL_8]] : vector<8x4xi1> // CHECK: %[[LOAD_A:.*]] = vector.mask %[[MASK_A]] { vector.transfer_read %[[A]]{{\[}}%{{.*}}, %{{.*}}], %{{.*}} {in_bounds = [true, true, true], permutation_map = #{{.*}}} : memref, vector<8x16x4xf32> } : vector<8x4xi1> -> vector<8x16x4xf32> // CHECK: %[[MASK_B:.*]] = vector.create_mask %[[VAL_8]], %[[VAL_6]] : vector<4x16xi1> // CHECK: %[[LOAD_B:.*]] = vector.mask %[[MASK_B]] { vector.transfer_read %[[B]]{{\[}}%{{.*}}, %{{.*}}], %{{.*}} {in_bounds = [true, true, true], permutation_map = #{{.*}}} : memref, vector<8x16x4xf32> } : vector<4x16xi1> -> vector<8x16x4xf32> // CHECK: %[[MASK_C:.*]] = vector.create_mask %[[VAL_4]], %[[VAL_6]] : vector<8x16xi1> // CHECK: %[[LOAD_C:.*]] = vector.mask %[[MASK_C]] { vector.transfer_read %[[C]]{{\[}}%{{.*}}, %{{.*}}], %{{.*}} {in_bounds = [true, true]} : memref, vector<8x16xf32> } : vector<8x16xi1> -> vector<8x16xf32> // CHECK: %[[MULF:.*]] = arith.mulf %[[LOAD_A]], %[[LOAD_B]] : vector<8x16x4xf32> // CHECK: %[[MASK_MULIT_RED:.*]] = vector.create_mask %[[VAL_4]], %[[VAL_6]], %[[VAL_8]] : vector<8x16x4xi1> // CHECK: %[[MULTI_RED:.*]] = vector.mask %[[MASK_MULIT_RED]] { vector.multi_reduction , %[[MULF]], %[[LOAD_C]] [2] : vector<8x16x4xf32> to vector<8x16xf32> } : vector<8x16x4xi1> -> vector<8x16xf32> // CHECK: %[[C2:.*]] = arith.constant 0 : index // CHECK: vector.mask %[[MASK_C]] { vector.transfer_write %[[MULTI_RED]], %[[C]]{{\[}}%[[C2]], %[[C2]]] {in_bounds = [true, true]} : vector<8x16xf32>, memref } : vector<8x16xi1> module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %matmul = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.vectorize %matmul vector_sizes [8, 16, 4] : !transform.any_op transform.yield } } // ----- func.func @mmt4d(%A: memref<16x16x8x1xf32>, %B: memref<16x16x8x1xf32>, %C_in: memref<16x16x8x8xf32>) { linalg.mmt4d ins(%A, %B: memref<16x16x8x1xf32>, memref<16x16x8x1xf32>) outs(%C_in: memref<16x16x8x8xf32>) return } // CHECK-LABEL: func.func @mmt4d( // CHECK-SAME: %[[A:.*]]: memref<16x16x8x1xf32>, %[[B:.*]]: memref<16x16x8x1xf32>, %[[C:.*]]: memref<16x16x8x8xf32>) { // CHECK: %[[VEC_A:.*]] = vector.transfer_read %[[A]]{{.*}} : memref<16x16x8x1xf32>, vector<16x16x16x8x8x1xf32> // CHECK: %[[VEC_B:.*]] = vector.transfer_read %[[B]]{{.*}} : memref<16x16x8x1xf32>, vector<16x16x16x8x8x1xf32> // CHECK: %[[VEC_C:.*]] = vector.transfer_read %[[C]]{{.*}} : memref<16x16x8x8xf32>, vector<16x16x8x8xf32> // CHECK: %[[MUL:.*]] = arith.mulf %[[VEC_A]], %[[VEC_B]] : vector<16x16x16x8x8x1xf32> // CHECK: %[[RED:.*]] = vector.multi_reduction , %[[MUL]], %[[VEC_C]] [2, 5] : vector<16x16x16x8x8x1xf32> to vector<16x16x8x8xf32> // CHECK: vector.transfer_write %[[RED]], %[[C]]{{.*}} : vector<16x16x8x8xf32>, memref<16x16x8x8xf32> module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %mmt4d = transform.structured.match ops{["linalg.mmt4d"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.vectorize %mmt4d : !transform.any_op transform.yield } } // ----- func.func @matmul_scalable(%A: memref, %B: memref, %C: memref) { linalg.matmul ins(%A, %B: memref, memref) outs(%C: memref) return } // CHECK-LABEL: func.func @matmul_scalable( // CHECK-SAME: %[[A:.*]]: memref, %[[B:.*]]: memref, %[[C:.*]]: memref) { // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_4:.*]] = memref.dim %[[A]], %[[VAL_3]] : memref // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 1 : index // CHECK-DAG: %[[VAL_6:.*]] = memref.dim %[[B]], %[[VAL_5]] : memref // CHECK-DAG: %[[VAL_7:.*]] = arith.constant 1 : index // CHECK-DAG: %[[VAL_8:.*]] = memref.dim %[[A]], %[[VAL_7]] : memref // CHECK: %[[MASK_A:.*]] = vector.create_mask %[[VAL_4]], %[[VAL_8]] : vector<8x4xi1> // CHECK: %[[LOAD_A:.*]] = vector.mask %[[MASK_A]] { vector.transfer_read %[[A]]{{\[}}%{{.*}}, %{{.*}}], %{{.*}} {in_bounds = [true, true, true], permutation_map = #{{.*}}} : memref, vector<8x[16]x4xf32> } : vector<8x4xi1> -> vector<8x[16]x4xf32> // CHECK: %[[MASK_B:.*]] = vector.create_mask %[[VAL_8]], %[[VAL_6]] : vector<4x[16]xi1> // CHECK: %[[LOAD_B:.*]] = vector.mask %[[MASK_B]] { vector.transfer_read %[[B]]{{\[}}%{{.*}}, %{{.*}}], %{{.*}} {in_bounds = [true, true, true], permutation_map = #{{.*}}} : memref, vector<8x[16]x4xf32> } : vector<4x[16]xi1> -> vector<8x[16]x4xf32> // CHECK: %[[MASK_C:.*]] = vector.create_mask %[[VAL_4]], %[[VAL_6]] : vector<8x[16]xi1> // CHECK: %[[LOAD_C:.*]] = vector.mask %[[MASK_C]] { vector.transfer_read %[[C]]{{\[}}%{{.*}}, %{{.*}}], %{{.*}} {in_bounds = [true, true]} : memref, vector<8x[16]xf32> } : vector<8x[16]xi1> -> vector<8x[16]xf32> // CHECK: %[[MULF:.*]] = arith.mulf %[[LOAD_A]], %[[LOAD_B]] : vector<8x[16]x4xf32> // CHECK: %[[MASK_MULIT_RED:.*]] = vector.create_mask %[[VAL_4]], %[[VAL_6]], %[[VAL_8]] : vector<8x[16]x4xi1> // CHECK: %[[MULTI_RED:.*]] = vector.mask %[[MASK_MULIT_RED]] { vector.multi_reduction , %[[MULF]], %[[LOAD_C]] [2] : vector<8x[16]x4xf32> to vector<8x[16]xf32> } : vector<8x[16]x4xi1> -> vector<8x[16]xf32> // CHECK: %[[C2:.*]] = arith.constant 0 : index // CHECK: vector.mask %[[MASK_C]] { vector.transfer_write %[[MULTI_RED]], %[[C]]{{\[}}%[[C2]], %[[C2]]] {in_bounds = [true, true]} : vector<8x[16]xf32>, memref } : vector<8x[16]xi1> module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %matmul = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.vectorize %matmul vector_sizes [8, [16], 4] : !transform.any_op transform.yield } } // ----- // CHECK-LABEL: func @test_vectorize_dynamic_shapes_unpack func.func @test_vectorize_dynamic_shapes_unpack(%arg0: tensor, %arg1: tensor) -> tensor { // CHECK: %[[C0:.*]] = arith.constant 0 // CHECK: %[[DIM:.*]] = tensor.dim %arg0, %[[C0]] : tensor // CHECK: %[[C1:.*]] = arith.constant 1 : index // CHECK: %[[DIM0:.*]] = tensor.dim %arg0, %[[C1]] : tensor // CHECK: %[[CST:.*]] = arith.constant 0.000000e+00 // CHECK: %[[C01:.*]] = arith.constant 0 // CHECK: %[[C02:.*]] = arith.constant 0 // CHECK: %[[DIM4:.*]] = tensor.dim %arg1, %[[C02]] : tensor // CHECK: %[[CNST14:.*]] = arith.constant 1 // CHECK: %[[DIM6:.*]] = tensor.dim %arg1, %[[CNST14]] : tensor // CHECK: %[[CNST16:.*]] = arith.constant 16 : index // CHECK: %[[CNST2:.*]] = arith.constant 2 : index // CHECK: %[[readMsk0:.*]] = vector.create_mask %[[DIM4]], %[[DIM6]], %[[CNST16]], %[[CNST2]] : vector<2x1x16x2xi1> // CHECK: %[[read0:.*]] = vector.mask %[[readMsk0]] {{.*}} vector.transfer_read %{{.*}} : tensor, vector<2x1x16x2xf32> } : vector<2x1x16x2xi1> -> vector<2x1x16x2xf32> // CHECK: %[[trans0:.*]] = vector.transpose %[[read0]], [0, 3, 1, 2] : vector<2x1x16x2xf32> to vector<2x2x1x16xf32> // CHECK: %[[sc0:.*]] = vector.shape_cast %[[trans0]] : vector<2x2x1x16xf32> to vector<4x16xf32> // CHECK: %[[empt0:.*]] = tensor.empty // CHECK: %[[writeMsk0:.*]] = vector.create_mask {{.*}} : vector<4x16xi1> // CHECK: %[[write0:.*]] = vector.mask %[[writeMsk0:.*]] {{.*}} vector.transfer_write %[[sc0]], %[[empt0]] // CHECK: return %[[write0]] %ret = linalg.unpack %arg1 inner_dims_pos = [1, 0] inner_tiles = [16, 2] into %arg0 : tensor -> tensor return %ret : tensor } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.unpack"]} in %arg0 : (!transform.any_op) -> !transform.any_op transform.structured.vectorize %0 vector_sizes [4, 16] : !transform.any_op transform.yield } } // ----- // CHECK-LABEL: func @test_vectorize_unpack func.func @test_vectorize_unpack(%source: tensor<8x8x32x16xf32>, %dest: tensor<256x128xf32>) -> tensor<256x128xf32> { // CHECK: %[[CST:.*]] = arith.constant 0.000000e+00 : f32 // CHECK: %[[C0:.*]]= arith.constant 0 : index // CHECK: %[[C8:.*]] = arith.constant 8 : index // CHECK: %[[C80:.*]] = arith.constant 8 : index // CHECK: %[[C32:.*]] = arith.constant 32 : index // CHECK: %[[C16:.*]] = arith.constant 16 : index // CHECK: %[[MSK0:.*]] = vector.create_mask %[[C8]], %[[C80]], %[[C32]], %[[C16]] : vector<16x8x32x16xi1> // CHECK: %[[READ0:.*]] = vector.mask %[[MSK0]] {{.*}} : vector<16x8x32x16xi1> -> vector<16x8x32x16xf32> // CHECK: %[[TRANSP0:.*]] = vector.transpose %[[READ0]], [0, 2, 1, 3] : vector<16x8x32x16xf32> to vector<16x32x8x16xf32> // CHECK: %[[SHAPC:.*]] = vector.shape_cast %[[TRANSP0]] : vector<16x32x8x16xf32> to vector<512x128xf32> // CHECK: %[[EMPT:.*]] = tensor.empty() : tensor<256x128xf32> // CHECK: %[[C01:.*]] = arith.constant 0 : index // CHECK: %[[C256:.*]] = arith.constant 256 : index // CHECK: %[[C128:.*]] = arith.constant 128 : index // CHECK: %[[WRITEMSK:.*]] = vector.create_mask %[[C256]], %[[C128]] : vector<512x128xi1> // CHECK: %[[WRIT:.*]] = vector.mask %[[WRITEMSK]] {{.*}} : vector<512x128xi1> -> tensor<256x128xf32> // CHECK: return %[[WRIT]] : tensor<256x128xf32> %0 = linalg.unpack %source inner_dims_pos = [0, 1] inner_tiles = [32, 16] into %dest : tensor<8x8x32x16xf32> -> tensor<256x128xf32> return %0 : tensor<256x128xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.unpack"]} in %arg0 : (!transform.any_op) -> !transform.any_op transform.structured.vectorize %0 vector_sizes [512, 128] : !transform.any_op transform.yield } } // ----- // CHECK-LABEL: func @test_vectorize_unpack_no_masks func.func @test_vectorize_unpack_no_masks(%source: tensor<8x8x32x16xf32>, %dest: tensor<256x128xf32>) -> tensor<256x128xf32> { // CHECK: %[[CST:.*]] = arith.constant 0.000000e+00 : f32 // CHECK: %[[C0:.*]] = arith.constant 0 : index // CHECK: %[[READ:.*]] = vector.transfer_read {{.*}} : tensor<8x8x32x16xf32>, vector<8x8x32x16xf32> // CHECK: %[[TRANSP:.*]] = vector.transpose %[[READ]], [0, 2, 1, 3] : vector<8x8x32x16xf32> to vector<8x32x8x16xf32> // CHECK: %[[SHAPC:.*]] = vector.shape_cast %[[TRANSP]] : vector<8x32x8x16xf32> to vector<256x128xf32> // CHECK: %[[EMPT:.*]] = tensor.empty() : tensor<256x128xf32> // CHECK: %[[C00:.*]] = arith.constant 0 : index // CHECK: %[[WRIT:.*]] = vector.transfer_write %[[SHAPC]], {{.*}} : vector<256x128xf32>, tensor<256x128xf32> // CHECK: return %[[WRIT]] : tensor<256x128xf32> %0 = linalg.unpack %source inner_dims_pos = [0, 1] inner_tiles = [32, 16] into %dest : tensor<8x8x32x16xf32> -> tensor<256x128xf32> return %0 : tensor<256x128xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.unpack"]} in %arg0 : (!transform.any_op) -> !transform.any_op transform.structured.vectorize %0 vector_sizes [256, 128] : !transform.any_op transform.yield } } // ----- // CHECK-LABEL: test_vectorize_unpack_with_outer_perm func.func @test_vectorize_unpack_with_outer_perm(%source: tensor<8x8x32x16xf32>, %dest: tensor<256x128xf32>) -> tensor<256x128xf32> { // CHECK: %[[CST:.*]] = arith.constant 0.000000e+00 : f32 // CHECK: %[[C0:.*]] = arith.constant 0 : index // CHECK: %[[READ:.*]] = vector.transfer_read {{.*}} : tensor<8x8x32x16xf32>, vector<8x8x32x16xf32> // CHECK: %[[TRANSP:.*]] = vector.transpose %[[READ]], [1, 2, 0, 3] : vector<8x8x32x16xf32> to vector<8x32x8x16xf32> // CHECK: %[[SHAPC:.*]] = vector.shape_cast %[[TRANSP]] : vector<8x32x8x16xf32> to vector<256x128xf32> // CHECK: %[[EMPT:.*]] = tensor.empty() : tensor<256x128xf32> // CHECK: %[[C00:.*]] = arith.constant 0 : index // CHECK: %[[WRIT:.*]] = vector.transfer_write %[[SHAPC]], {{.*}} : vector<256x128xf32>, tensor<256x128xf32> // CHECK: return %[[WRIT]] : tensor<256x128xf32> %0 = linalg.unpack %source outer_dims_perm = [1, 0] inner_dims_pos = [0, 1] inner_tiles = [32, 16] into %dest : tensor<8x8x32x16xf32> -> tensor<256x128xf32> return %0 : tensor<256x128xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.unpack"]} in %arg0 : (!transform.any_op) -> !transform.any_op transform.structured.vectorize %0 vector_sizes [256, 128] : !transform.any_op transform.yield } } // ----- // CHECK-LABEL: test_vectorize_pack_no_vector_sizes func.func @test_vectorize_pack_no_vector_sizes(%arg0: tensor<64x4xf32>, %arg1: tensor<2x4x16x2xf32>) -> tensor<2x4x16x2xf32> { %pack = linalg.pack %arg0 outer_dims_perm = [1, 0] inner_dims_pos = [0, 1] inner_tiles = [16, 2] into %arg1 : tensor<64x4xf32> -> tensor<2x4x16x2xf32> return %pack : tensor<2x4x16x2xf32> } // CHECK-DAG: %[[cst:.*]] = arith.constant 0.000000e+00 : f32 // CHECK-DAG: %[[c0:.*]] = arith.constant 0 : index // CHECK: %[[read:.*]] = vector.transfer_read %{{.*}}[%[[c0]], %[[c0]]], %[[cst]] // CHECK-SAME: {in_bounds = [true, true]} : tensor<64x4xf32>, vector<64x4xf32> // CHECK: %[[shape_cast:.*]] = vector.shape_cast %[[read]] : vector<64x4xf32> to vector<4x16x2x2xf32> // CHECK: %[[transpose:.*]] = vector.transpose %[[shape_cast]], [2, 0, 1, 3] : vector<4x16x2x2xf32> to vector<2x4x16x2xf32> // CHECK-DAG: %[[c0_1:.*]] = arith.constant 0 : index // CHECK-DAG: %[[empty:.*]] = tensor.empty() : tensor<2x4x16x2xf32> // CHECK: %[[write:.*]] = vector.transfer_write %[[transpose]], %[[empty]][%[[c0_1]], %[[c0_1]], %[[c0_1]], %[[c0_1]]] // CHECK-SAME: {in_bounds = [true, true, true, true]} : vector<2x4x16x2xf32>, tensor<2x4x16x2xf32> // CHECK: return %[[write]] : tensor<2x4x16x2xf32> module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.pack"]} in %arg0 : (!transform.any_op) -> !transform.any_op transform.structured.vectorize %0 : !transform.any_op transform.yield } } // ----- // CHECK-LABEL: test_vectorize_padded_pack_no_vector_sizes func.func @test_vectorize_padded_pack_no_vector_sizes(%arg0: tensor<32x7x15xf32>, %arg1: tensor<32x4x1x16x2xf32>) -> tensor<32x4x1x16x2xf32> { %pad = arith.constant 0.000000e+00 : f32 %pack = linalg.pack %arg0 padding_value(%pad : f32) inner_dims_pos = [2, 1] inner_tiles = [16, 2] into %arg1 : tensor<32x7x15xf32> -> tensor<32x4x1x16x2xf32> return %pack : tensor<32x4x1x16x2xf32> } // CHECK-DAG: %[[cst:.*]] = arith.constant 0.000000e+00 : f32 // CHECK-DAG: %[[c0:.*]] = arith.constant 0 : index // CHECK: %[[transfer_read:.*]] = vector.transfer_read %{{.*}}[%[[c0]], %[[c0]], %[[c0]]], %[[cst]] // CHECK-SAME: {in_bounds = [true, false, false]} : tensor<32x7x15xf32>, vector<32x8x16xf32> // CHECK: %[[shape_cast:.*]] = vector.shape_cast %[[transfer_read]] : vector<32x8x16xf32> to vector<32x4x2x1x16xf32> // CHECK: %[[transpose:.*]] = vector.transpose %[[shape_cast]], [0, 1, 3, 4, 2] : vector<32x4x2x1x16xf32> to vector<32x4x1x16x2xf32> // CHECK-DAG: %[[c0_1:.*]] = arith.constant 0 : index // CHECK-DAG: %[[empty:.*]] = tensor.empty() : tensor<32x4x1x16x2xf32> // CHECK: %[[write:.*]] = vector.transfer_write %[[transpose]], %[[empty]][%[[c0_1]], %[[c0_1]], %[[c0_1]], %[[c0_1]], %[[c0_1]]] // CHECK-SAME: {in_bounds = [true, true, true, true, true]} : vector<32x4x1x16x2xf32>, tensor<32x4x1x16x2xf32> // CHECK: return %[[write]] : tensor<32x4x1x16x2xf32> module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.pack"]} in %arg0 : (!transform.any_op) -> !transform.any_op transform.structured.vectorize %0 : !transform.any_op transform.yield } } // ----- func.func @test_vectorize_unpack_no_vector_sizes(%source: tensor<8x8x32x16xf32>, %dest: tensor<256x128xf32>) -> tensor<256x128xf32> { // CHECK: %[[CST:.*]] = arith.constant 0.000000e+00 : f32 // CHECK: %[[C0:.*]] = arith.constant 0 : index // CHECK: %[[READ:.*]] = vector.transfer_read {{.*}} : tensor<8x8x32x16xf32>, vector<8x8x32x16xf32> // CHECK: %[[TRANSP:.*]] = vector.transpose %[[READ]], [0, 2, 1, 3] : vector<8x8x32x16xf32> to vector<8x32x8x16xf32> // CHECK: %[[SHAPC:.*]] = vector.shape_cast %[[TRANSP]] : vector<8x32x8x16xf32> to vector<256x128xf32> // CHECK: %[[EMPT:.*]] = tensor.empty() : tensor<256x128xf32> // CHECK: %[[C00:.*]] = arith.constant 0 : index // CHECK: %[[WRIT:.*]] = vector.transfer_write %[[SHAPC]], {{.*}} : vector<256x128xf32>, tensor<256x128xf32> // CHECK: return %[[WRIT]] : tensor<256x128xf32> %0 = linalg.unpack %source inner_dims_pos = [0, 1] inner_tiles = [32, 16] into %dest : tensor<8x8x32x16xf32> -> tensor<256x128xf32> return %0 : tensor<256x128xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.unpack"]} in %arg0 : (!transform.any_op) -> !transform.any_op transform.structured.vectorize %0 : !transform.any_op transform.yield } } // ----- func.func @test_vectorize_unpack_no_vector_sizes_slice_output(%source: tensor<8x4x16x16xf32>, %dest: tensor<64x127xf32>) -> tensor<64x127xf32> { // CHECK: %[[CST:.*]] = arith.constant 0.000000e+00 : f32 // CHECK: %[[C0:.*]] = arith.constant 0 : index // CHECK: %[[READ:.*]] = vector.transfer_read {{.*}} : tensor<8x4x16x16xf32>, vector<8x4x16x16xf32> // CHECK: %[[TRANSP:.*]] = vector.transpose %[[READ]], [1, 2, 0, 3] : vector<8x4x16x16xf32> to vector<4x16x8x16xf32> // CHECK: %[[SHAPC:.*]] = vector.shape_cast %[[TRANSP]] : vector<4x16x8x16xf32> to vector<64x128xf32> // CHECK: %[[EMPT:.*]] = tensor.empty() : tensor<64x127xf32> // CHECK: %[[C00:.*]] = arith.constant 0 : index // CHECK: %[[WRIT:.*]] = vector.transfer_write %[[SHAPC]], %[[EMPT]]{{\[}}%[[C00]], %[[C00]]] // CHECK-SAME: {in_bounds = [true, false]} : vector<64x128xf32>, tensor<64x127xf32> // CHECK: return %[[WRIT]] : tensor<64x127xf32> %0 = linalg.unpack %source outer_dims_perm = [1, 0] inner_dims_pos = [0, 1] inner_tiles = [16, 16] into %dest : tensor<8x4x16x16xf32> -> tensor<64x127xf32> return %0 : tensor<64x127xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.unpack"]} in %arg0 : (!transform.any_op) -> !transform.any_op transform.structured.vectorize %0 : !transform.any_op transform.yield } } // ----- func.func @test_vectorize_unpack_no_vector_sizes_permute(%source: tensor<4x7x4xf32>, %dest: tensor<7x16xf32>) -> tensor<7x16xf32> { %0 = linalg.unpack %source outer_dims_perm=[1, 0] inner_dims_pos = [1] inner_tiles = [4] into %dest : tensor<4x7x4xf32> -> tensor<7x16xf32> return %0 : tensor<7x16xf32> } // CHECK: %[[CST:.*]] = arith.constant 0.000000e+00 : f32 // CHECK: %[[C0:.*]] = arith.constant 0 : index // CHECK: %[[READ:.*]] = vector.transfer_read {{.*}} : tensor<4x7x4xf32>, vector<4x7x4xf32> // CHECK: %[[TRANSP:.*]] = vector.transpose %[[READ]], [1, 0, 2] : vector<4x7x4xf32> to vector<7x4x4xf32> // CHECK: %[[SHAPC:.*]] = vector.shape_cast %[[TRANSP]] : vector<7x4x4xf32> to vector<7x16xf32> // CHECK: %[[EMPT:.*]] = tensor.empty() : tensor<7x16xf32> // CHECK: %[[C00:.*]] = arith.constant 0 : index // CHECK: %[[WRIT:.*]] = vector.transfer_write %[[SHAPC]], {{.*}} : vector<7x16xf32>, tensor<7x16xf32> // CHECK: return %[[WRIT]] : tensor<7x16xf32> module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.unpack"]} in %arg0 : (!transform.any_op) -> !transform.any_op transform.structured.vectorize %0 : !transform.any_op transform.yield } }