//===-- CompactUnwindInfo.cpp -----------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // C Includes // C++ Includes #include #include "lldb/Core/Log.h" #include "lldb/Core/Section.h" #include "lldb/Core/ArchSpec.h" #include "lldb/Core/Module.h" #include "lldb/Core/Section.h" #include "lldb/Symbol/CompactUnwindInfo.h" #include "lldb/Symbol/ObjectFile.h" #include "lldb/Symbol/UnwindPlan.h" #include "llvm/Support/MathExtras.h" using namespace lldb; using namespace lldb_private; namespace lldb_private { // Constants from enum { UNWIND_IS_NOT_FUNCTION_START = 0x80000000, UNWIND_HAS_LSDA = 0x40000000, UNWIND_PERSONALITY_MASK = 0x30000000, }; enum { UNWIND_X86_MODE_MASK = 0x0F000000, UNWIND_X86_MODE_EBP_FRAME = 0x01000000, UNWIND_X86_MODE_STACK_IMMD = 0x02000000, UNWIND_X86_MODE_STACK_IND = 0x03000000, UNWIND_X86_MODE_DWARF = 0x04000000, UNWIND_X86_EBP_FRAME_REGISTERS = 0x00007FFF, UNWIND_X86_EBP_FRAME_OFFSET = 0x00FF0000, UNWIND_X86_FRAMELESS_STACK_SIZE = 0x00FF0000, UNWIND_X86_FRAMELESS_STACK_ADJUST = 0x0000E000, UNWIND_X86_FRAMELESS_STACK_REG_COUNT = 0x00001C00, UNWIND_X86_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF, UNWIND_X86_DWARF_SECTION_OFFSET = 0x00FFFFFF, }; enum { UNWIND_X86_REG_NONE = 0, UNWIND_X86_REG_EBX = 1, UNWIND_X86_REG_ECX = 2, UNWIND_X86_REG_EDX = 3, UNWIND_X86_REG_EDI = 4, UNWIND_X86_REG_ESI = 5, UNWIND_X86_REG_EBP = 6, }; enum { UNWIND_X86_64_MODE_MASK = 0x0F000000, UNWIND_X86_64_MODE_RBP_FRAME = 0x01000000, UNWIND_X86_64_MODE_STACK_IMMD = 0x02000000, UNWIND_X86_64_MODE_STACK_IND = 0x03000000, UNWIND_X86_64_MODE_DWARF = 0x04000000, UNWIND_X86_64_RBP_FRAME_REGISTERS = 0x00007FFF, UNWIND_X86_64_RBP_FRAME_OFFSET = 0x00FF0000, UNWIND_X86_64_FRAMELESS_STACK_SIZE = 0x00FF0000, UNWIND_X86_64_FRAMELESS_STACK_ADJUST = 0x0000E000, UNWIND_X86_64_FRAMELESS_STACK_REG_COUNT = 0x00001C00, UNWIND_X86_64_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF, UNWIND_X86_64_DWARF_SECTION_OFFSET = 0x00FFFFFF, }; enum { UNWIND_X86_64_REG_NONE = 0, UNWIND_X86_64_REG_RBX = 1, UNWIND_X86_64_REG_R12 = 2, UNWIND_X86_64_REG_R13 = 3, UNWIND_X86_64_REG_R14 = 4, UNWIND_X86_64_REG_R15 = 5, UNWIND_X86_64_REG_RBP = 6, }; }; #ifndef UNWIND_SECOND_LEVEL_REGULAR #define UNWIND_SECOND_LEVEL_REGULAR 2 #endif #ifndef UNWIND_SECOND_LEVEL_COMPRESSED #define UNWIND_SECOND_LEVEL_COMPRESSED 3 #endif #ifndef UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET #define UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET(entry) (entry & 0x00FFFFFF) #endif #ifndef UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX #define UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX(entry) ((entry >> 24) & 0xFF) #endif #define EXTRACT_BITS(value, mask) \ ( (value >> llvm::countTrailingZeros(static_cast(mask), llvm::ZB_Width)) & \ (((1 << llvm::CountPopulation_32(static_cast(mask))))-1) ) //---------------------- // constructor //---------------------- CompactUnwindInfo::CompactUnwindInfo(ObjectFile& objfile, SectionSP& section_sp) : m_objfile (objfile), m_section_sp (section_sp), m_mutex (), m_indexes (), m_indexes_computed (eLazyBoolCalculate), m_unwindinfo_data (), m_unwindinfo_data_computed (false), m_unwind_header () { } //---------------------- // destructor //---------------------- CompactUnwindInfo::~CompactUnwindInfo() { } bool CompactUnwindInfo::GetUnwindPlan (Target &target, Address addr, UnwindPlan& unwind_plan) { if (!IsValid ()) { return false; } FunctionInfo function_info; if (GetCompactUnwindInfoForFunction (target, addr, function_info)) { // shortcut return for functions that have no compact unwind if (function_info.encoding == 0) return false; ArchSpec arch; if (m_objfile.GetArchitecture (arch)) { if (arch.GetTriple().getArch() == llvm::Triple::x86_64) { return CreateUnwindPlan_x86_64 (target, function_info, unwind_plan, addr); } if (arch.GetTriple().getArch() == llvm::Triple::x86) { return CreateUnwindPlan_i386 (target, function_info, unwind_plan, addr); } } } return false; } bool CompactUnwindInfo::IsValid () { if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted()) return false; if (m_indexes_computed == eLazyBoolYes && m_unwindinfo_data_computed) return true; ScanIndex (); return m_indexes_computed == eLazyBoolYes && m_unwindinfo_data_computed; } void CompactUnwindInfo::ScanIndex () { Mutex::Locker locker(m_mutex); if (m_indexes_computed == eLazyBoolYes && m_unwindinfo_data_computed) return; // We can't read the index for some reason. if (m_indexes_computed == eLazyBoolNo) { return; } if (m_unwindinfo_data_computed == false) { m_objfile.ReadSectionData (m_section_sp.get(), m_unwindinfo_data); m_unwindinfo_data_computed = true; } if (m_unwindinfo_data.GetByteSize() > 0) { offset_t offset = 0; // struct unwind_info_section_header // { // uint32_t version; // UNWIND_SECTION_VERSION // uint32_t commonEncodingsArraySectionOffset; // uint32_t commonEncodingsArrayCount; // uint32_t personalityArraySectionOffset; // uint32_t personalityArrayCount; // uint32_t indexSectionOffset; // uint32_t indexCount; m_unwind_header.version = m_unwindinfo_data.GetU32(&offset); m_unwind_header.common_encodings_array_offset = m_unwindinfo_data.GetU32(&offset); m_unwind_header.common_encodings_array_count = m_unwindinfo_data.GetU32(&offset); m_unwind_header.personality_array_offset = m_unwindinfo_data.GetU32(&offset); m_unwind_header.personality_array_count = m_unwindinfo_data.GetU32(&offset); uint32_t indexSectionOffset = m_unwindinfo_data.GetU32(&offset); uint32_t indexCount = m_unwindinfo_data.GetU32(&offset); if (m_unwind_header.version != 1) { m_indexes_computed = eLazyBoolNo; } // Parse the basic information from the indexes // We wait to scan the second level page info until it's needed // struct unwind_info_section_header_index_entry // { // uint32_t functionOffset; // uint32_t secondLevelPagesSectionOffset; // uint32_t lsdaIndexArraySectionOffset; // }; offset = indexSectionOffset; for (int idx = 0; idx < indexCount; idx++) { uint32_t function_offset = m_unwindinfo_data.GetU32(&offset); // functionOffset uint32_t second_level_offset = m_unwindinfo_data.GetU32(&offset); // secondLevelPagesSectionOffset uint32_t lsda_offset = m_unwindinfo_data.GetU32(&offset); // lsdaIndexArraySectionOffset if (second_level_offset > m_section_sp->GetByteSize() || lsda_offset > m_section_sp->GetByteSize()) { m_indexes_computed = eLazyBoolNo; } UnwindIndex this_index; this_index.function_offset = function_offset; // this_index.second_level = second_level_offset; this_index.lsda_array_start = lsda_offset; if (m_indexes.size() > 0) { m_indexes[m_indexes.size() - 1].lsda_array_end = lsda_offset; } if (second_level_offset == 0) { this_index.sentinal_entry = true; } m_indexes.push_back (this_index); } m_indexes_computed = eLazyBoolYes; } else { m_indexes_computed = eLazyBoolNo; } } uint32_t CompactUnwindInfo::GetLSDAForFunctionOffset (uint32_t lsda_offset, uint32_t lsda_count, uint32_t function_offset) { // struct unwind_info_section_header_lsda_index_entry // { // uint32_t functionOffset; // uint32_t lsdaOffset; // }; offset_t first_entry = lsda_offset; uint32_t low = 0; uint32_t high = lsda_count; while (low < high) { uint32_t mid = (low + high) / 2; offset_t offset = first_entry + (mid * 8); uint32_t mid_func_offset = m_unwindinfo_data.GetU32(&offset); // functionOffset uint32_t mid_lsda_offset = m_unwindinfo_data.GetU32(&offset); // lsdaOffset if (mid_func_offset == function_offset) { return mid_lsda_offset; } if (mid_func_offset < function_offset) { low = mid + 1; } else { high = mid; } } return 0; } lldb::offset_t CompactUnwindInfo::BinarySearchRegularSecondPage (uint32_t entry_page_offset, uint32_t entry_count, uint32_t function_offset) { // typedef uint32_t compact_unwind_encoding_t; // struct unwind_info_regular_second_level_entry // { // uint32_t functionOffset; // compact_unwind_encoding_t encoding; offset_t first_entry = entry_page_offset; uint32_t low = 0; uint32_t high = entry_count; uint32_t last = high - 1; while (low < high) { uint32_t mid = (low + high) / 2; offset_t offset = first_entry + (mid * 8); uint32_t mid_func_offset = m_unwindinfo_data.GetU32(&offset); // functionOffset uint32_t next_func_offset = 0; if (mid < last) { offset = first_entry + ((mid + 1) * 8); next_func_offset = m_unwindinfo_data.GetU32(&offset); // functionOffset } if (mid_func_offset <= function_offset) { if (mid == last || (next_func_offset > function_offset)) { return first_entry + (mid * 8); } else { low = mid + 1; } } else { high = mid; } } return LLDB_INVALID_OFFSET; } uint32_t CompactUnwindInfo::BinarySearchCompressedSecondPage (uint32_t entry_page_offset, uint32_t entry_count, uint32_t function_offset_to_find, uint32_t function_offset_base) { offset_t first_entry = entry_page_offset; uint32_t low = 0; uint32_t high = entry_count; uint32_t last = high - 1; while (low < high) { uint32_t mid = (low + high) / 2; offset_t offset = first_entry + (mid * 4); uint32_t entry = m_unwindinfo_data.GetU32(&offset); // entry uint32_t mid_func_offset = UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET (entry); mid_func_offset += function_offset_base; uint32_t next_func_offset = 0; if (mid < last) { offset = first_entry + ((mid + 1) * 4); uint32_t next_entry = m_unwindinfo_data.GetU32(&offset); // entry next_func_offset = UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET (next_entry); next_func_offset += function_offset_base; } if (mid_func_offset <= function_offset_to_find) { if (mid == last || (next_func_offset > function_offset_to_find)) { return UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX (entry); } else { low = mid + 1; } } else { high = mid; } } return UINT32_MAX; } bool CompactUnwindInfo::GetCompactUnwindInfoForFunction (Target &target, Address address, FunctionInfo &unwind_info) { unwind_info.encoding = 0; unwind_info.lsda_address.Clear(); unwind_info.personality_ptr_address.Clear(); if (!IsValid ()) return false; // FIXME looking into a problem with getting the wrong compact unwind entry for // _CFRunLoopRun from CoreFoundation in a live process; disabling the Compact // Unwind plans until I get to the bottom of what's going on there. return false; addr_t text_section_file_address = LLDB_INVALID_ADDRESS; SectionList *sl = m_objfile.GetSectionList (); if (sl) { SectionSP text_sect = sl->FindSectionByType (eSectionTypeCode, true); if (text_sect.get()) { text_section_file_address = text_sect->GetFileAddress(); } } if (text_section_file_address == LLDB_INVALID_ADDRESS) return false; addr_t function_offset = address.GetFileAddress() - m_objfile.GetHeaderAddress().GetFileAddress(); UnwindIndex key; key.function_offset = function_offset; std::vector::const_iterator it; it = std::lower_bound (m_indexes.begin(), m_indexes.end(), key); if (it == m_indexes.end()) { return false; } if (it->function_offset != key.function_offset) { if (it != m_indexes.begin()) --it; } if (it->sentinal_entry == true) { return false; } offset_t second_page_offset = it->second_level; offset_t lsda_array_start = it->lsda_array_start; offset_t lsda_array_count = (it->lsda_array_end - it->lsda_array_start) / 8; offset_t offset = second_page_offset; uint32_t kind = m_unwindinfo_data.GetU32(&offset); // UNWIND_SECOND_LEVEL_REGULAR or UNWIND_SECOND_LEVEL_COMPRESSED if (kind == UNWIND_SECOND_LEVEL_REGULAR) { // struct unwind_info_regular_second_level_page_header // { // uint32_t kind; // UNWIND_SECOND_LEVEL_REGULAR // uint16_t entryPageOffset; // uint16_t entryCount; // typedef uint32_t compact_unwind_encoding_t; // struct unwind_info_regular_second_level_entry // { // uint32_t functionOffset; // compact_unwind_encoding_t encoding; uint16_t entry_page_offset = m_unwindinfo_data.GetU16(&offset); // entryPageOffset uint16_t entry_count = m_unwindinfo_data.GetU16(&offset); // entryCount offset_t entry_offset = BinarySearchRegularSecondPage (second_page_offset + entry_page_offset, entry_count, function_offset); if (entry_offset == LLDB_INVALID_OFFSET) { return false; } entry_offset += 4; // skip over functionOffset unwind_info.encoding = m_unwindinfo_data.GetU32(&entry_offset); // encoding if (unwind_info.encoding & UNWIND_HAS_LSDA) { SectionList *sl = m_objfile.GetSectionList (); if (sl) { uint32_t lsda_offset = GetLSDAForFunctionOffset (lsda_array_start, lsda_array_count, function_offset); addr_t objfile_header_file_address = m_objfile.GetHeaderAddress().GetFileAddress(); unwind_info.lsda_address.ResolveAddressUsingFileSections (objfile_header_file_address + lsda_offset, sl); } } if (unwind_info.encoding & UNWIND_PERSONALITY_MASK) { uint32_t personality_index = EXTRACT_BITS (unwind_info.encoding, UNWIND_PERSONALITY_MASK); if (personality_index > 0) { personality_index--; if (personality_index < m_unwind_header.personality_array_count) { offset_t offset = m_unwind_header.personality_array_offset; offset += 4 * personality_index; SectionList *sl = m_objfile.GetSectionList (); if (sl) { uint32_t personality_offset = m_unwindinfo_data.GetU32(&offset); addr_t objfile_header_file_address = m_objfile.GetHeaderAddress().GetFileAddress(); unwind_info.personality_ptr_address.ResolveAddressUsingFileSections (objfile_header_file_address + personality_offset, sl); } } } } return true; } else if (kind == UNWIND_SECOND_LEVEL_COMPRESSED) { // struct unwind_info_compressed_second_level_page_header // { // uint32_t kind; // UNWIND_SECOND_LEVEL_COMPRESSED // uint16_t entryPageOffset; // offset from this 2nd lvl page idx to array of entries // // (an entry has a function offset and index into the encodings) // // NB function offset from the entry in the compressed page // // must be added to the index's functionOffset value. // uint16_t entryCount; // uint16_t encodingsPageOffset; // offset from this 2nd lvl page idx to array of encodings // uint16_t encodingsCount; uint16_t entry_page_offset = m_unwindinfo_data.GetU16(&offset); // entryPageOffset uint16_t entry_count = m_unwindinfo_data.GetU16(&offset); // entryCount uint16_t encodings_page_offset = m_unwindinfo_data.GetU16(&offset); // encodingsPageOffset uint16_t encodings_count = m_unwindinfo_data.GetU16(&offset); // encodingsCount uint32_t encoding_index = BinarySearchCompressedSecondPage (second_page_offset + entry_page_offset, entry_count, function_offset, it->function_offset); if (encoding_index == UINT32_MAX || encoding_index >= encodings_count + m_unwind_header.common_encodings_array_count) { return false; } uint32_t encoding = 0; if (encoding_index < m_unwind_header.common_encodings_array_count) { offset = m_unwind_header.common_encodings_array_offset + (encoding_index * sizeof (uint32_t)); encoding = m_unwindinfo_data.GetU32(&offset); // encoding entry from the commonEncodingsArray } else { uint32_t page_specific_entry_index = encoding_index - m_unwind_header.common_encodings_array_count; offset = second_page_offset + encodings_page_offset + (page_specific_entry_index * sizeof (uint32_t)); encoding = m_unwindinfo_data.GetU32(&offset); // encoding entry from the page-specific encoding array } if (encoding == 0) return false; unwind_info.encoding = encoding; unwind_info.encoding = encoding; if (unwind_info.encoding & UNWIND_HAS_LSDA) { SectionList *sl = m_objfile.GetSectionList (); if (sl) { uint32_t lsda_offset = GetLSDAForFunctionOffset (lsda_array_start, lsda_array_count, function_offset); addr_t objfile_header_file_address = m_objfile.GetHeaderAddress().GetFileAddress(); unwind_info.lsda_address.ResolveAddressUsingFileSections (objfile_header_file_address + lsda_offset, sl); } } if (unwind_info.encoding & UNWIND_PERSONALITY_MASK) { uint32_t personality_index = EXTRACT_BITS (unwind_info.encoding, UNWIND_PERSONALITY_MASK); if (personality_index > 0) { personality_index--; if (personality_index < m_unwind_header.personality_array_count) { offset_t offset = m_unwind_header.personality_array_offset; offset += 4 * personality_index; SectionList *sl = m_objfile.GetSectionList (); if (sl) { uint32_t personality_offset = m_unwindinfo_data.GetU32(&offset); addr_t objfile_header_file_address = m_objfile.GetHeaderAddress().GetFileAddress(); unwind_info.personality_ptr_address.ResolveAddressUsingFileSections (objfile_header_file_address + personality_offset, sl); } } } } return true; } return false; } enum x86_64_eh_regnum { rax = 0, rdx = 1, rcx = 2, rbx = 3, rsi = 4, rdi = 5, rbp = 6, rsp = 7, r8 = 8, r9 = 9, r10 = 10, r11 = 11, r12 = 12, r13 = 13, r14 = 14, r15 = 15, rip = 16 // this is officially the Return Address register number, but close enough }; // Convert the compact_unwind_info.h register numbering scheme // to eRegisterKindGCC (eh_frame) register numbering scheme. uint32_t translate_to_eh_frame_regnum_x86_64 (uint32_t unwind_regno) { switch (unwind_regno) { case UNWIND_X86_64_REG_RBX: return x86_64_eh_regnum::rbx; case UNWIND_X86_64_REG_R12: return x86_64_eh_regnum::r12; case UNWIND_X86_64_REG_R13: return x86_64_eh_regnum::r13; case UNWIND_X86_64_REG_R14: return x86_64_eh_regnum::r14; case UNWIND_X86_64_REG_R15: return x86_64_eh_regnum::r15; case UNWIND_X86_64_REG_RBP: return x86_64_eh_regnum::rbp; default: return LLDB_INVALID_REGNUM; } } bool CompactUnwindInfo::CreateUnwindPlan_x86_64 (Target &target, FunctionInfo &function_info, UnwindPlan &unwind_plan, Address pc_or_function_start) { unwind_plan.SetSourceName ("compact unwind info"); unwind_plan.SetSourcedFromCompiler (eLazyBoolYes); unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo); unwind_plan.SetRegisterKind (eRegisterKindGCC); unwind_plan.SetLSDAAddress (function_info.lsda_address); unwind_plan.SetPersonalityFunctionPtr (function_info.personality_ptr_address); UnwindPlan::RowSP row (new UnwindPlan::Row); const int wordsize = 8; int mode = function_info.encoding & UNWIND_X86_64_MODE_MASK; switch (mode) { case UNWIND_X86_64_MODE_RBP_FRAME: { row->SetCFARegister (translate_to_eh_frame_regnum_x86_64 (UNWIND_X86_64_REG_RBP)); row->SetCFAOffset (2 * wordsize); row->SetOffset (0); row->SetRegisterLocationToAtCFAPlusOffset (x86_64_eh_regnum::rbp, wordsize * -2, true); row->SetRegisterLocationToAtCFAPlusOffset (x86_64_eh_regnum::rip, wordsize * -1, true); row->SetRegisterLocationToIsCFAPlusOffset (x86_64_eh_regnum::rsp, 0, true); uint32_t saved_registers_offset = EXTRACT_BITS (function_info.encoding, UNWIND_X86_64_RBP_FRAME_OFFSET); uint32_t saved_registers_locations = EXTRACT_BITS (function_info.encoding, UNWIND_X86_64_RBP_FRAME_REGISTERS); saved_registers_offset += 2; for (int i = 0; i < 5; i++) { uint32_t regnum = saved_registers_locations & 0x7; switch (regnum) { case UNWIND_X86_64_REG_NONE: break; case UNWIND_X86_64_REG_RBX: case UNWIND_X86_64_REG_R12: case UNWIND_X86_64_REG_R13: case UNWIND_X86_64_REG_R14: case UNWIND_X86_64_REG_R15: row->SetRegisterLocationToAtCFAPlusOffset (translate_to_eh_frame_regnum_x86_64 (regnum), wordsize * -saved_registers_offset, true); break; } saved_registers_offset--; saved_registers_locations >>= 3; } unwind_plan.AppendRow (row); return true; } break; case UNWIND_X86_64_MODE_STACK_IND: { // The clang in Xcode 6 is emitting incorrect compact unwind encodings for this // style of unwind. It was fixed in llvm r217020 although the algorith being // used to compute this style of unwind in generateCompactUnwindEncodingImpl() // isn't as foolproof as I'm comfortable with -- if any instructions other than // a push are scheduled before the subq, it will give bogus encoding results. // The target and pc_or_function_start arguments will be needed to handle this // encoding style correctly -- to find the start address of the function and // read memory offset from there. return false; } break; #if 0 case UNWIND_X86_64_MODE_STACK_IMMD: { uint32_t stack_size = EXTRACT_BITS (encoding, UNWIND_X86_64_FRAMELESS_STACK_SIZE); uint32_t register_count = EXTRACT_BITS (encoding, UNWIND_X86_64_FRAMELESS_STACK_REG_COUNT); uint32_t permutation = EXTRACT_BITS (encoding, UNWIND_X86_64_FRAMELESS_STACK_REG_PERMUTATION); if (mode == UNWIND_X86_64_MODE_STACK_IND && function_start) { uint32_t stack_adjust = EXTRACT_BITS (encoding, UNWIND_X86_64_FRAMELESS_STACK_ADJUST); // offset into the function instructions; 0 == beginning of first instruction uint32_t offset_to_subl_insn = EXTRACT_BITS (encoding, UNWIND_X86_64_FRAMELESS_STACK_SIZE); stack_size = *((uint32_t*) (function_start + offset_to_subl_insn)); stack_size += stack_adjust * 8; printf ("large stack "); } printf ("frameless function: stack size %d, register count %d ", stack_size * 8, register_count); if (register_count == 0) { printf (" no registers saved"); } else { // We need to include (up to) 6 registers in 10 bits. // That would be 18 bits if we just used 3 bits per reg to indicate // the order they're saved on the stack. // // This is done with Lehmer code permutation, e.g. see // http://stackoverflow.com/questions/1506078/fast-permutation-number-permutation-mapping-algorithms int permunreg[6]; // This decodes the variable-base number in the 10 bits // and gives us the Lehmer code sequence which can then // be decoded. switch (register_count) { case 6: permunreg[0] = permutation/120; // 120 == 5! permutation -= (permunreg[0]*120); permunreg[1] = permutation/24; // 24 == 4! permutation -= (permunreg[1]*24); permunreg[2] = permutation/6; // 6 == 3! permutation -= (permunreg[2]*6); permunreg[3] = permutation/2; // 2 == 2! permutation -= (permunreg[3]*2); permunreg[4] = permutation; // 1 == 1! permunreg[5] = 0; break; case 5: permunreg[0] = permutation/120; permutation -= (permunreg[0]*120); permunreg[1] = permutation/24; permutation -= (permunreg[1]*24); permunreg[2] = permutation/6; permutation -= (permunreg[2]*6); permunreg[3] = permutation/2; permutation -= (permunreg[3]*2); permunreg[4] = permutation; break; case 4: permunreg[0] = permutation/60; permutation -= (permunreg[0]*60); permunreg[1] = permutation/12; permutation -= (permunreg[1]*12); permunreg[2] = permutation/3; permutation -= (permunreg[2]*3); permunreg[3] = permutation; break; case 3: permunreg[0] = permutation/20; permutation -= (permunreg[0]*20); permunreg[1] = permutation/4; permutation -= (permunreg[1]*4); permunreg[2] = permutation; break; case 2: permunreg[0] = permutation/5; permutation -= (permunreg[0]*5); permunreg[1] = permutation; break; case 1: permunreg[0] = permutation; break; } // Decode the Lehmer code for this permutation of // the registers v. http://en.wikipedia.org/wiki/Lehmer_code int registers[6]; bool used[7] = { false, false, false, false, false, false, false }; for (int i = 0; i < register_count; i++) { int renum = 0; for (int j = 1; j < 7; j++) { if (used[j] == false) { if (renum == permunreg[i]) { registers[i] = j; used[j] = true; break; } renum++; } } } printf (" CFA is rsp+%d ", stack_size * 8); uint32_t saved_registers_offset = 1; printf (" rip=[CFA-%d]", saved_registers_offset * 8); saved_registers_offset++; for (int i = (sizeof (registers) / sizeof (int)) - 1; i >= 0; i--) { switch (registers[i]) { case UNWIND_X86_64_REG_NONE: break; case UNWIND_X86_64_REG_RBX: printf (" rbx=[CFA-%d]", saved_registers_offset * 8); break; case UNWIND_X86_64_REG_R12: printf (" r12=[CFA-%d]", saved_registers_offset * 8); break; case UNWIND_X86_64_REG_R13: printf (" r13=[CFA-%d]", saved_registers_offset * 8); break; case UNWIND_X86_64_REG_R14: printf (" r14=[CFA-%d]", saved_registers_offset * 8); break; case UNWIND_X86_64_REG_R15: printf (" r15=[CFA-%d]", saved_registers_offset * 8); break; case UNWIND_X86_64_REG_RBP: printf (" rbp=[CFA-%d]", saved_registers_offset * 8); break; } saved_registers_offset++; } } } break; #endif case UNWIND_X86_64_MODE_DWARF: { return false; } break; case 0: { return false; } break; } return false; } enum i386_eh_regnum { eax = 0, ecx = 1, edx = 2, ebx = 3, ebp = 4, esp = 5, esi = 6, edi = 7, eip = 8 // this is officially the Return Address register number, but close enough }; // Convert the compact_unwind_info.h register numbering scheme // to eRegisterKindGCC (eh_frame) register numbering scheme. uint32_t translate_to_eh_frame_regnum_i386 (uint32_t unwind_regno) { switch (unwind_regno) { case UNWIND_X86_REG_EBX: return i386_eh_regnum::ebx; case UNWIND_X86_REG_ECX: return i386_eh_regnum::ecx; case UNWIND_X86_REG_EDX: return i386_eh_regnum::edx; case UNWIND_X86_REG_EDI: return i386_eh_regnum::edi; case UNWIND_X86_REG_ESI: return i386_eh_regnum::esi; case UNWIND_X86_REG_EBP: return i386_eh_regnum::ebp; default: return LLDB_INVALID_REGNUM; } } bool CompactUnwindInfo::CreateUnwindPlan_i386 (Target &target, FunctionInfo &function_info, UnwindPlan &unwind_plan, Address pc_or_function_start) { unwind_plan.SetSourceName ("compact unwind info"); unwind_plan.SetSourcedFromCompiler (eLazyBoolYes); unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo); unwind_plan.SetRegisterKind (eRegisterKindGCC); unwind_plan.SetLSDAAddress (function_info.lsda_address); unwind_plan.SetPersonalityFunctionPtr (function_info.personality_ptr_address); UnwindPlan::RowSP row (new UnwindPlan::Row); const int wordsize = 4; int mode = function_info.encoding & UNWIND_X86_MODE_MASK; switch (mode) { case UNWIND_X86_MODE_EBP_FRAME: { row->SetCFARegister (translate_to_eh_frame_regnum_i386 (UNWIND_X86_REG_EBP)); row->SetCFAOffset (2 * wordsize); row->SetOffset (0); row->SetRegisterLocationToAtCFAPlusOffset (i386_eh_regnum::ebp, wordsize * -2, true); row->SetRegisterLocationToAtCFAPlusOffset (i386_eh_regnum::eip, wordsize * -1, true); row->SetRegisterLocationToIsCFAPlusOffset (i386_eh_regnum::esp, 0, true); uint32_t saved_registers_offset = EXTRACT_BITS (function_info.encoding, UNWIND_X86_EBP_FRAME_OFFSET); uint32_t saved_registers_locations = EXTRACT_BITS (function_info.encoding, UNWIND_X86_EBP_FRAME_REGISTERS); saved_registers_offset += 2; for (int i = 0; i < 5; i++) { uint32_t regnum = saved_registers_locations & 0x7; switch (regnum) { case UNWIND_X86_REG_NONE: break; case UNWIND_X86_REG_EBX: case UNWIND_X86_REG_ECX: case UNWIND_X86_REG_EDX: case UNWIND_X86_REG_EDI: case UNWIND_X86_REG_ESI: row->SetRegisterLocationToAtCFAPlusOffset (translate_to_eh_frame_regnum_i386 (regnum), wordsize * -saved_registers_offset, true); break; } saved_registers_offset--; saved_registers_locations >>= 3; } unwind_plan.AppendRow (row); return true; } break; case UNWIND_X86_MODE_STACK_IND: case UNWIND_X86_MODE_STACK_IMMD: case UNWIND_X86_MODE_DWARF: { return false; } break; } return false; }