//===- bolt/Profile/StaleProfileMatching.cpp - Profile data matching ----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // BOLT often has to deal with profiles collected on binaries built from several // revisions behind release. As a result, a certain percentage of functions is // considered stale and not optimized. This file implements an ability to match // profile to functions that are not 100% binary identical, and thus, increasing // the optimization coverage and boost the performance of applications. // // The algorithm consists of two phases: matching and inference: // - At the matching phase, we try to "guess" as many block and jump counts from // the stale profile as possible. To this end, the content of each basic block // is hashed and stored in the (yaml) profile. When BOLT optimizes a binary, // it computes block hashes and identifies the corresponding entries in the // stale profile. It yields a partial profile for every CFG in the binary. // - At the inference phase, we employ a network flow-based algorithm (profi) to // reconstruct "realistic" block and jump counts from the partial profile // generated at the first stage. In practice, we don't always produce proper // profile data but the majority (e.g., >90%) of CFGs get the correct counts. // //===----------------------------------------------------------------------===// #include "bolt/Core/HashUtilities.h" #include "bolt/Profile/YAMLProfileReader.h" #include "llvm/ADT/Bitfields.h" #include "llvm/ADT/Hashing.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/xxhash.h" #include "llvm/Transforms/Utils/SampleProfileInference.h" #include using namespace llvm; #undef DEBUG_TYPE #define DEBUG_TYPE "bolt-prof" namespace opts { extern cl::OptionCategory BoltOptCategory; cl::opt InferStaleProfile("infer-stale-profile", cl::desc("Infer counts from stale profile data."), cl::init(false), cl::Hidden, cl::cat(BoltOptCategory)); cl::opt StaleMatchingMaxFuncSize( "stale-matching-max-func-size", cl::desc("The maximum size of a function to consider for inference."), cl::init(10000), cl::Hidden, cl::cat(BoltOptCategory)); // Parameters of the profile inference algorithm. The default values are tuned // on several benchmarks. cl::opt StaleMatchingEvenFlowDistribution( "stale-matching-even-flow-distribution", cl::desc("Try to evenly distribute flow when there are multiple equally " "likely options."), cl::init(true), cl::ReallyHidden, cl::cat(BoltOptCategory)); cl::opt StaleMatchingRebalanceUnknown( "stale-matching-rebalance-unknown", cl::desc("Evenly re-distribute flow among unknown subgraphs."), cl::init(false), cl::ReallyHidden, cl::cat(BoltOptCategory)); cl::opt StaleMatchingJoinIslands( "stale-matching-join-islands", cl::desc("Join isolated components having positive flow."), cl::init(true), cl::ReallyHidden, cl::cat(BoltOptCategory)); cl::opt StaleMatchingCostBlockInc( "stale-matching-cost-block-inc", cl::desc("The cost of increasing a block count by one."), cl::init(150), cl::ReallyHidden, cl::cat(BoltOptCategory)); cl::opt StaleMatchingCostBlockDec( "stale-matching-cost-block-dec", cl::desc("The cost of decreasing a block count by one."), cl::init(150), cl::ReallyHidden, cl::cat(BoltOptCategory)); cl::opt StaleMatchingCostJumpInc( "stale-matching-cost-jump-inc", cl::desc("The cost of increasing a jump count by one."), cl::init(150), cl::ReallyHidden, cl::cat(BoltOptCategory)); cl::opt StaleMatchingCostJumpDec( "stale-matching-cost-jump-dec", cl::desc("The cost of decreasing a jump count by one."), cl::init(150), cl::ReallyHidden, cl::cat(BoltOptCategory)); cl::opt StaleMatchingCostBlockUnknownInc( "stale-matching-cost-block-unknown-inc", cl::desc("The cost of increasing an unknown block count by one."), cl::init(1), cl::ReallyHidden, cl::cat(BoltOptCategory)); cl::opt StaleMatchingCostJumpUnknownInc( "stale-matching-cost-jump-unknown-inc", cl::desc("The cost of increasing an unknown jump count by one."), cl::init(140), cl::ReallyHidden, cl::cat(BoltOptCategory)); cl::opt StaleMatchingCostJumpUnknownFTInc( "stale-matching-cost-jump-unknown-ft-inc", cl::desc( "The cost of increasing an unknown fall-through jump count by one."), cl::init(3), cl::ReallyHidden, cl::cat(BoltOptCategory)); } // namespace opts namespace llvm { namespace bolt { /// An object wrapping several components of a basic block hash. The combined /// (blended) hash is represented and stored as one uint64_t, while individual /// components are of smaller size (e.g., uint16_t or uint8_t). struct BlendedBlockHash { private: using ValueOffset = Bitfield::Element; using ValueOpcode = Bitfield::Element; using ValueInstr = Bitfield::Element; using ValuePred = Bitfield::Element; using ValueSucc = Bitfield::Element; public: explicit BlendedBlockHash() {} explicit BlendedBlockHash(uint64_t Hash) { Offset = Bitfield::get(Hash); OpcodeHash = Bitfield::get(Hash); InstrHash = Bitfield::get(Hash); PredHash = Bitfield::get(Hash); SuccHash = Bitfield::get(Hash); } /// Combine the blended hash into uint64_t. uint64_t combine() const { uint64_t Hash = 0; Bitfield::set(Hash, Offset); Bitfield::set(Hash, OpcodeHash); Bitfield::set(Hash, InstrHash); Bitfield::set(Hash, PredHash); Bitfield::set(Hash, SuccHash); return Hash; } /// Compute a distance between two given blended hashes. The smaller the /// distance, the more similar two blocks are. For identical basic blocks, /// the distance is zero. uint64_t distance(const BlendedBlockHash &BBH) const { assert(OpcodeHash == BBH.OpcodeHash && "incorrect blended hash distance computation"); uint64_t Dist = 0; // Account for NeighborHash Dist += SuccHash == BBH.SuccHash ? 0 : 1; Dist += PredHash == BBH.PredHash ? 0 : 1; Dist <<= 16; // Account for InstrHash Dist += InstrHash == BBH.InstrHash ? 0 : 1; Dist <<= 16; // Account for Offset Dist += (Offset >= BBH.Offset ? Offset - BBH.Offset : BBH.Offset - Offset); return Dist; } /// The offset of the basic block from the function start. uint16_t Offset{0}; /// (Loose) Hash of the basic block instructions, excluding operands. uint16_t OpcodeHash{0}; /// (Strong) Hash of the basic block instructions, including opcodes and /// operands. uint16_t InstrHash{0}; /// (Loose) Hashes of the predecessors of the basic block. uint8_t PredHash{0}; /// (Loose) Hashes of the successors of the basic block. uint8_t SuccHash{0}; }; /// The object is used to identify and match basic blocks in a BinaryFunction /// given their hashes computed on a binary built from several revisions behind /// release. class StaleMatcher { public: /// Initialize stale matcher. void init(const std::vector &Blocks, const std::vector &Hashes) { assert(Blocks.size() == Hashes.size() && "incorrect matcher initialization"); for (size_t I = 0; I < Blocks.size(); I++) { FlowBlock *Block = Blocks[I]; uint16_t OpHash = Hashes[I].OpcodeHash; OpHashToBlocks[OpHash].push_back(std::make_pair(Hashes[I], Block)); } } /// Find the most similar block for a given hash. const FlowBlock *matchBlock(BlendedBlockHash BlendedHash) const { auto BlockIt = OpHashToBlocks.find(BlendedHash.OpcodeHash); if (BlockIt == OpHashToBlocks.end()) return nullptr; FlowBlock *BestBlock = nullptr; uint64_t BestDist = std::numeric_limits::max(); for (const auto &[Hash, Block] : BlockIt->second) { uint64_t Dist = Hash.distance(BlendedHash); if (BestBlock == nullptr || Dist < BestDist) { BestDist = Dist; BestBlock = Block; } } return BestBlock; } /// Returns true if the two basic blocks (in the binary and in the profile) /// corresponding to the given hashes are matched to each other with a high /// confidence. static bool isHighConfidenceMatch(BlendedBlockHash Hash1, BlendedBlockHash Hash2) { return Hash1.InstrHash == Hash2.InstrHash; } private: using HashBlockPairType = std::pair; std::unordered_map> OpHashToBlocks; }; void BinaryFunction::computeBlockHashes(HashFunction HashFunction) const { if (size() == 0) return; assert(hasCFG() && "the function is expected to have CFG"); std::vector BlendedHashes(BasicBlocks.size()); std::vector OpcodeHashes(BasicBlocks.size()); // Initialize hash components. for (size_t I = 0; I < BasicBlocks.size(); I++) { const BinaryBasicBlock *BB = BasicBlocks[I]; assert(BB->getIndex() == I && "incorrect block index"); BlendedHashes[I].Offset = BB->getOffset(); // Hashing complete instructions. std::string InstrHashStr = hashBlock( BC, *BB, [&](const MCOperand &Op) { return hashInstOperand(BC, Op); }); if (HashFunction == HashFunction::StdHash) { uint64_t InstrHash = std::hash{}(InstrHashStr); BlendedHashes[I].InstrHash = (uint16_t)hash_value(InstrHash); } else if (HashFunction == HashFunction::XXH3) { uint64_t InstrHash = llvm::xxh3_64bits(InstrHashStr); BlendedHashes[I].InstrHash = (uint16_t)InstrHash; } else { llvm_unreachable("Unhandled HashFunction"); } // Hashing opcodes. std::string OpcodeHashStr = hashBlockLoose(BC, *BB); if (HashFunction == HashFunction::StdHash) { OpcodeHashes[I] = std::hash{}(OpcodeHashStr); BlendedHashes[I].OpcodeHash = (uint16_t)hash_value(OpcodeHashes[I]); } else if (HashFunction == HashFunction::XXH3) { OpcodeHashes[I] = llvm::xxh3_64bits(OpcodeHashStr); BlendedHashes[I].OpcodeHash = (uint16_t)OpcodeHashes[I]; } else { llvm_unreachable("Unhandled HashFunction"); } } // Initialize neighbor hash. for (size_t I = 0; I < BasicBlocks.size(); I++) { const BinaryBasicBlock *BB = BasicBlocks[I]; // Append hashes of successors. uint64_t Hash = 0; for (BinaryBasicBlock *SuccBB : BB->successors()) { uint64_t SuccHash = OpcodeHashes[SuccBB->getIndex()]; Hash = hashing::detail::hash_16_bytes(Hash, SuccHash); } if (HashFunction == HashFunction::StdHash) { // Compatibility with old behavior. BlendedHashes[I].SuccHash = (uint8_t)hash_value(Hash); } else { BlendedHashes[I].SuccHash = (uint8_t)Hash; } // Append hashes of predecessors. Hash = 0; for (BinaryBasicBlock *PredBB : BB->predecessors()) { uint64_t PredHash = OpcodeHashes[PredBB->getIndex()]; Hash = hashing::detail::hash_16_bytes(Hash, PredHash); } if (HashFunction == HashFunction::StdHash) { // Compatibility with old behavior. BlendedHashes[I].PredHash = (uint8_t)hash_value(Hash); } else { BlendedHashes[I].PredHash = (uint8_t)Hash; } } // Assign hashes. for (size_t I = 0; I < BasicBlocks.size(); I++) { const BinaryBasicBlock *BB = BasicBlocks[I]; BB->setHash(BlendedHashes[I].combine()); } } /// Create a wrapper flow function to use with the profile inference algorithm, /// and initialize its jumps and metadata. FlowFunction createFlowFunction(const BinaryFunction::BasicBlockOrderType &BlockOrder) { FlowFunction Func; // Add a special "dummy" source so that there is always a unique entry point. // Because of the extra source, for all other blocks in FlowFunction it holds // that Block.Index == BB->getIndex() + 1 FlowBlock EntryBlock; EntryBlock.Index = 0; Func.Blocks.push_back(EntryBlock); // Create FlowBlock for every basic block in the binary function for (const BinaryBasicBlock *BB : BlockOrder) { Func.Blocks.emplace_back(); FlowBlock &Block = Func.Blocks.back(); Block.Index = Func.Blocks.size() - 1; (void)BB; assert(Block.Index == BB->getIndex() + 1 && "incorrectly assigned basic block index"); } // Create FlowJump for each jump between basic blocks in the binary function std::vector InDegree(Func.Blocks.size(), 0); for (const BinaryBasicBlock *SrcBB : BlockOrder) { std::unordered_set UniqueSuccs; // Collect regular jumps for (const BinaryBasicBlock *DstBB : SrcBB->successors()) { // Ignoring parallel edges if (UniqueSuccs.find(DstBB) != UniqueSuccs.end()) continue; Func.Jumps.emplace_back(); FlowJump &Jump = Func.Jumps.back(); Jump.Source = SrcBB->getIndex() + 1; Jump.Target = DstBB->getIndex() + 1; InDegree[Jump.Target]++; UniqueSuccs.insert(DstBB); } // Collect jumps to landing pads for (const BinaryBasicBlock *DstBB : SrcBB->landing_pads()) { // Ignoring parallel edges if (UniqueSuccs.find(DstBB) != UniqueSuccs.end()) continue; Func.Jumps.emplace_back(); FlowJump &Jump = Func.Jumps.back(); Jump.Source = SrcBB->getIndex() + 1; Jump.Target = DstBB->getIndex() + 1; InDegree[Jump.Target]++; UniqueSuccs.insert(DstBB); } } // Add dummy edges to the extra sources. If there are multiple entry blocks, // add an unlikely edge from 0 to the subsequent ones assert(InDegree[0] == 0 && "dummy entry blocks shouldn't have predecessors"); for (uint64_t I = 1; I < Func.Blocks.size(); I++) { const BinaryBasicBlock *BB = BlockOrder[I - 1]; if (BB->isEntryPoint() || InDegree[I] == 0) { Func.Jumps.emplace_back(); FlowJump &Jump = Func.Jumps.back(); Jump.Source = 0; Jump.Target = I; if (!BB->isEntryPoint()) Jump.IsUnlikely = true; } } // Create necessary metadata for the flow function for (FlowJump &Jump : Func.Jumps) { assert(Jump.Source < Func.Blocks.size()); Func.Blocks[Jump.Source].SuccJumps.push_back(&Jump); assert(Jump.Target < Func.Blocks.size()); Func.Blocks[Jump.Target].PredJumps.push_back(&Jump); } return Func; } /// Assign initial block/jump weights based on the stale profile data. The goal /// is to extract as much information from the stale profile as possible. Here /// we assume that each basic block is specified via a hash value computed from /// its content and the hashes of the unchanged basic blocks stay the same /// across different revisions of the binary. /// Whenever there is a count in the profile with the hash corresponding to one /// of the basic blocks in the binary, the count is "matched" to the block. /// Similarly, if both the source and the target of a count in the profile are /// matched to a jump in the binary, the count is recorded in CFG. void matchWeightsByHashes(BinaryContext &BC, const BinaryFunction::BasicBlockOrderType &BlockOrder, const yaml::bolt::BinaryFunctionProfile &YamlBF, FlowFunction &Func) { assert(Func.Blocks.size() == BlockOrder.size() + 1); std::vector Blocks; std::vector BlendedHashes; for (uint64_t I = 0; I < BlockOrder.size(); I++) { const BinaryBasicBlock *BB = BlockOrder[I]; assert(BB->getHash() != 0 && "empty hash of BinaryBasicBlock"); Blocks.push_back(&Func.Blocks[I + 1]); BlendedBlockHash BlendedHash(BB->getHash()); BlendedHashes.push_back(BlendedHash); LLVM_DEBUG(dbgs() << "BB with index " << I << " has hash = " << Twine::utohexstr(BB->getHash()) << "\n"); } StaleMatcher Matcher; Matcher.init(Blocks, BlendedHashes); // Index in yaml profile => corresponding (matched) block DenseMap MatchedBlocks; // Match blocks from the profile to the blocks in CFG for (const yaml::bolt::BinaryBasicBlockProfile &YamlBB : YamlBF.Blocks) { assert(YamlBB.Hash != 0 && "empty hash of BinaryBasicBlockProfile"); BlendedBlockHash YamlHash(YamlBB.Hash); const FlowBlock *MatchedBlock = Matcher.matchBlock(YamlHash); // Always match the entry block. if (MatchedBlock == nullptr && YamlBB.Index == 0) MatchedBlock = Blocks[0]; if (MatchedBlock != nullptr) { const BinaryBasicBlock *BB = BlockOrder[MatchedBlock->Index - 1]; MatchedBlocks[YamlBB.Index] = MatchedBlock; BlendedBlockHash BinHash = BlendedHashes[MatchedBlock->Index - 1]; LLVM_DEBUG(dbgs() << "Matched yaml block (bid = " << YamlBB.Index << ")" << " with hash " << Twine::utohexstr(YamlBB.Hash) << " to BB (index = " << MatchedBlock->Index - 1 << ")" << " with hash " << Twine::utohexstr(BinHash.combine()) << "\n"); // Update matching stats accounting for the matched block. if (Matcher.isHighConfidenceMatch(BinHash, YamlHash)) { ++BC.Stats.NumMatchedBlocks; BC.Stats.MatchedSampleCount += YamlBB.ExecCount; LLVM_DEBUG(dbgs() << " exact match\n"); } else { LLVM_DEBUG(dbgs() << " loose match\n"); } if (YamlBB.NumInstructions == BB->size()) ++BC.Stats.NumStaleBlocksWithEqualIcount; } else { LLVM_DEBUG( dbgs() << "Couldn't match yaml block (bid = " << YamlBB.Index << ")" << " with hash " << Twine::utohexstr(YamlBB.Hash) << "\n"); } // Update matching stats. ++BC.Stats.NumStaleBlocks; BC.Stats.StaleSampleCount += YamlBB.ExecCount; } // Match jumps from the profile to the jumps from CFG std::vector OutWeight(Func.Blocks.size(), 0); std::vector InWeight(Func.Blocks.size(), 0); for (const yaml::bolt::BinaryBasicBlockProfile &YamlBB : YamlBF.Blocks) { for (const yaml::bolt::SuccessorInfo &YamlSI : YamlBB.Successors) { if (YamlSI.Count == 0) continue; // Try to find the jump for a given (src, dst) pair from the profile and // assign the jump weight based on the profile count const uint64_t SrcIndex = YamlBB.Index; const uint64_t DstIndex = YamlSI.Index; const FlowBlock *MatchedSrcBlock = MatchedBlocks.lookup(SrcIndex); const FlowBlock *MatchedDstBlock = MatchedBlocks.lookup(DstIndex); if (MatchedSrcBlock != nullptr && MatchedDstBlock != nullptr) { // Find a jump between the two blocks FlowJump *Jump = nullptr; for (FlowJump *SuccJump : MatchedSrcBlock->SuccJumps) { if (SuccJump->Target == MatchedDstBlock->Index) { Jump = SuccJump; break; } } // Assign the weight, if the corresponding jump is found if (Jump != nullptr) { Jump->Weight = YamlSI.Count; Jump->HasUnknownWeight = false; } } // Assign the weight for the src block, if it is found if (MatchedSrcBlock != nullptr) OutWeight[MatchedSrcBlock->Index] += YamlSI.Count; // Assign the weight for the dst block, if it is found if (MatchedDstBlock != nullptr) InWeight[MatchedDstBlock->Index] += YamlSI.Count; } } // Assign block counts based on in-/out- jumps for (FlowBlock &Block : Func.Blocks) { if (OutWeight[Block.Index] == 0 && InWeight[Block.Index] == 0) { assert(Block.HasUnknownWeight && "unmatched block with a positive count"); continue; } Block.HasUnknownWeight = false; Block.Weight = std::max(OutWeight[Block.Index], InWeight[Block.Index]); } } /// The function finds all blocks that are (i) reachable from the Entry block /// and (ii) do not have a path to an exit, and marks all such blocks 'cold' /// so that profi does not send any flow to such blocks. void preprocessUnreachableBlocks(FlowFunction &Func) { const uint64_t NumBlocks = Func.Blocks.size(); // Start bfs from the source std::queue Queue; std::vector VisitedEntry(NumBlocks, false); for (uint64_t I = 0; I < NumBlocks; I++) { FlowBlock &Block = Func.Blocks[I]; if (Block.isEntry()) { Queue.push(I); VisitedEntry[I] = true; break; } } while (!Queue.empty()) { const uint64_t Src = Queue.front(); Queue.pop(); for (FlowJump *Jump : Func.Blocks[Src].SuccJumps) { const uint64_t Dst = Jump->Target; if (!VisitedEntry[Dst]) { Queue.push(Dst); VisitedEntry[Dst] = true; } } } // Start bfs from all sinks std::vector VisitedExit(NumBlocks, false); for (uint64_t I = 0; I < NumBlocks; I++) { FlowBlock &Block = Func.Blocks[I]; if (Block.isExit() && VisitedEntry[I]) { Queue.push(I); VisitedExit[I] = true; } } while (!Queue.empty()) { const uint64_t Src = Queue.front(); Queue.pop(); for (FlowJump *Jump : Func.Blocks[Src].PredJumps) { const uint64_t Dst = Jump->Source; if (!VisitedExit[Dst]) { Queue.push(Dst); VisitedExit[Dst] = true; } } } // Make all blocks of zero weight so that flow is not sent for (uint64_t I = 0; I < NumBlocks; I++) { FlowBlock &Block = Func.Blocks[I]; if (Block.Weight == 0) continue; if (!VisitedEntry[I] || !VisitedExit[I]) { Block.Weight = 0; Block.HasUnknownWeight = true; Block.IsUnlikely = true; for (FlowJump *Jump : Block.SuccJumps) { if (Jump->Source == Block.Index && Jump->Target == Block.Index) { Jump->Weight = 0; Jump->HasUnknownWeight = true; Jump->IsUnlikely = true; } } } } } /// Decide if stale profile matching can be applied for a given function. /// Currently we skip inference for (very) large instances and for instances /// having "unexpected" control flow (e.g., having no sink basic blocks). bool canApplyInference(const FlowFunction &Func) { if (Func.Blocks.size() > opts::StaleMatchingMaxFuncSize) return false; bool HasExitBlocks = llvm::any_of( Func.Blocks, [&](const FlowBlock &Block) { return Block.isExit(); }); if (!HasExitBlocks) return false; return true; } /// Apply the profile inference algorithm for a given flow function. void applyInference(FlowFunction &Func) { ProfiParams Params; // Set the params from the command-line flags. Params.EvenFlowDistribution = opts::StaleMatchingEvenFlowDistribution; Params.RebalanceUnknown = opts::StaleMatchingRebalanceUnknown; Params.JoinIslands = opts::StaleMatchingJoinIslands; Params.CostBlockInc = opts::StaleMatchingCostBlockInc; Params.CostBlockEntryInc = opts::StaleMatchingCostBlockInc; Params.CostBlockDec = opts::StaleMatchingCostBlockDec; Params.CostBlockEntryDec = opts::StaleMatchingCostBlockDec; Params.CostBlockUnknownInc = opts::StaleMatchingCostBlockUnknownInc; Params.CostJumpInc = opts::StaleMatchingCostJumpInc; Params.CostJumpFTInc = opts::StaleMatchingCostJumpInc; Params.CostJumpDec = opts::StaleMatchingCostJumpDec; Params.CostJumpFTDec = opts::StaleMatchingCostJumpDec; Params.CostJumpUnknownInc = opts::StaleMatchingCostJumpUnknownInc; Params.CostJumpUnknownFTInc = opts::StaleMatchingCostJumpUnknownFTInc; applyFlowInference(Params, Func); } /// Collect inferred counts from the flow function and update annotations in /// the binary function. void assignProfile(BinaryFunction &BF, const BinaryFunction::BasicBlockOrderType &BlockOrder, FlowFunction &Func) { BinaryContext &BC = BF.getBinaryContext(); assert(Func.Blocks.size() == BlockOrder.size() + 1); for (uint64_t I = 0; I < BlockOrder.size(); I++) { FlowBlock &Block = Func.Blocks[I + 1]; BinaryBasicBlock *BB = BlockOrder[I]; // Update block's count BB->setExecutionCount(Block.Flow); // Update jump counts: (i) clean existing counts and then (ii) set new ones auto BI = BB->branch_info_begin(); for (const BinaryBasicBlock *DstBB : BB->successors()) { (void)DstBB; BI->Count = 0; BI->MispredictedCount = 0; ++BI; } for (FlowJump *Jump : Block.SuccJumps) { if (Jump->IsUnlikely) continue; if (Jump->Flow == 0) continue; BinaryBasicBlock &SuccBB = *BlockOrder[Jump->Target - 1]; // Check if the edge corresponds to a regular jump or a landing pad if (BB->getSuccessor(SuccBB.getLabel())) { BinaryBasicBlock::BinaryBranchInfo &BI = BB->getBranchInfo(SuccBB); BI.Count += Jump->Flow; } else { BinaryBasicBlock *LP = BB->getLandingPad(SuccBB.getLabel()); if (LP && LP->getKnownExecutionCount() < Jump->Flow) LP->setExecutionCount(Jump->Flow); } } // Update call-site annotations auto setOrUpdateAnnotation = [&](MCInst &Instr, StringRef Name, uint64_t Count) { if (BC.MIB->hasAnnotation(Instr, Name)) BC.MIB->removeAnnotation(Instr, Name); // Do not add zero-count annotations if (Count == 0) return; BC.MIB->addAnnotation(Instr, Name, Count); }; for (MCInst &Instr : *BB) { // Ignore pseudo instructions if (BC.MIB->isPseudo(Instr)) continue; // Ignore jump tables const MCInst *LastInstr = BB->getLastNonPseudoInstr(); if (BC.MIB->getJumpTable(*LastInstr) && LastInstr == &Instr) continue; if (BC.MIB->isIndirectCall(Instr) || BC.MIB->isIndirectBranch(Instr)) { auto &ICSP = BC.MIB->getOrCreateAnnotationAs( Instr, "CallProfile"); if (!ICSP.empty()) { // Try to evenly distribute the counts among the call sites const uint64_t TotalCount = Block.Flow; const uint64_t NumSites = ICSP.size(); for (uint64_t Idx = 0; Idx < ICSP.size(); Idx++) { IndirectCallProfile &CSP = ICSP[Idx]; uint64_t CountPerSite = TotalCount / NumSites; // When counts cannot be exactly distributed, increase by 1 the // counts of the first (TotalCount % NumSites) call sites if (Idx < TotalCount % NumSites) CountPerSite++; CSP.Count = CountPerSite; } } else { ICSP.emplace_back(nullptr, Block.Flow, 0); } } else if (BC.MIB->getConditionalTailCall(Instr)) { // We don't know exactly the number of times the conditional tail call // is executed; conservatively, setting it to the count of the block setOrUpdateAnnotation(Instr, "CTCTakenCount", Block.Flow); BC.MIB->removeAnnotation(Instr, "CTCMispredCount"); } else if (BC.MIB->isCall(Instr)) { setOrUpdateAnnotation(Instr, "Count", Block.Flow); } } } // Update function's execution count and mark the function inferred. BF.setExecutionCount(Func.Blocks[0].Flow); BF.setHasInferredProfile(true); } bool YAMLProfileReader::inferStaleProfile( BinaryFunction &BF, const yaml::bolt::BinaryFunctionProfile &YamlBF) { if (!BF.hasCFG()) return false; LLVM_DEBUG(dbgs() << "BOLT-INFO: applying profile inference for " << "\"" << BF.getPrintName() << "\"\n"); // Make sure that block hashes are up to date. BF.computeBlockHashes(YamlBP.Header.HashFunction); const BinaryFunction::BasicBlockOrderType BlockOrder( BF.getLayout().block_begin(), BF.getLayout().block_end()); // Create a wrapper flow function to use with the profile inference algorithm. FlowFunction Func = createFlowFunction(BlockOrder); // Match as many block/jump counts from the stale profile as possible matchWeightsByHashes(BF.getBinaryContext(), BlockOrder, YamlBF, Func); // Adjust the flow function by marking unreachable blocks Unlikely so that // they don't get any counts assigned. preprocessUnreachableBlocks(Func); // Check if profile inference can be applied for the instance. if (!canApplyInference(Func)) return false; // Apply the profile inference algorithm. applyInference(Func); // Collect inferred counts and update function annotations. assignProfile(BF, BlockOrder, Func); // As of now, we always mark the binary function having "correct" profile. // In the future, we may discard the results for instances with poor inference // metrics and keep such functions un-optimized. return true; } } // end namespace bolt } // end namespace llvm