//===- GPUTransformOps.cpp - Implementation of GPU transform ops ----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "mlir/Dialect/GPU/TransformOps/GPUTransformOps.h" #include "mlir/Dialect/Affine/IR/AffineOps.h" #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Dialect/GPU/IR/GPUDialect.h" #include "mlir/Dialect/GPU/TransformOps/GPUTransformOps.h" #include "mlir/Dialect/MemRef/IR/MemRef.h" #include "mlir/Dialect/SCF/IR/DeviceMappingInterface.h" #include "mlir/Dialect/SCF/IR/SCF.h" #include "mlir/Dialect/Transform/IR/TransformDialect.h" #include "mlir/Dialect/Transform/IR/TransformInterfaces.h" #include "mlir/Dialect/Utils/IndexingUtils.h" #include "mlir/Dialect/Vector/IR/VectorOps.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/IRMapping.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OpDefinition.h" #include "mlir/IR/Visitors.h" #include "mlir/Support/LLVM.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/TypeSwitch.h" #include "llvm/Support/Debug.h" using namespace mlir; using namespace mlir::gpu; using namespace mlir::transform; using namespace mlir::transform::gpu; #define DEBUG_TYPE "gpu-transforms" #define DEBUG_TYPE_ALIAS "gpu-transforms-alias" #define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ") #define LDBG(X) LLVM_DEBUG(DBGS() << X << "\n") #define DBGS_ALIAS() (llvm::dbgs() << '[' << DEBUG_TYPE_ALIAS << "] ") //===----------------------------------------------------------------------===// // EliminateBarriersOp //===----------------------------------------------------------------------===// // The functions below provide interface-like verification, but are too specific // to barrier elimination to become interfaces. /// Implement the MemoryEffectsOpInterface in the suitable way. static bool isKnownNoEffectsOpWithoutInterface(Operation *op) { // memref::AssumeAlignment is conceptually pure, but marking it as such would // make DCE immediately remove it. return isa(op); } /// Returns `true` if the op is defines the parallel region that is subject to /// barrier synchronization. static bool isParallelRegionBoundary(Operation *op) { if (op->hasAttr("__parallel_region_boundary_for_test")) return true; return isa(op); } /// Returns `true` if the op behaves like a sequential loop, e.g., the control /// flow "wraps around" from the end of the body region back to its start. static bool isSequentialLoopLike(Operation *op) { return isa(op); } /// Returns `true` if the regions of the op are guaranteed to be executed at /// most once. Thus, if an operation in one of the nested regions of `op` is /// executed than so are all the other operations in this region. static bool hasSingleExecutionBody(Operation *op) { return isa(op); } /// Returns `true` if the operation is known to produce a pointer-like object /// distinct from any other object produced by a similar operation. For example, /// an allocation produces such an object. static bool producesDistinctBase(Operation *op) { return isa_and_nonnull(op); } /// Populates `effects` with all memory effects without associating them to a /// specific value. static void addAllValuelessEffects( SmallVectorImpl &effects) { effects.emplace_back(MemoryEffects::Effect::get()); effects.emplace_back(MemoryEffects::Effect::get()); effects.emplace_back(MemoryEffects::Effect::get()); effects.emplace_back(MemoryEffects::Effect::get()); } /// Collect the memory effects of the given op in 'effects'. Returns 'true' if /// it could extract the effect information from the op, otherwise returns /// 'false' and conservatively populates the list with all possible effects /// associated with no particular value or symbol. static bool collectEffects(Operation *op, SmallVectorImpl &effects, bool ignoreBarriers = true) { // Skip over barriers to avoid infinite recursion (those barriers would ask // this barrier again). if (ignoreBarriers && isa(op)) return true; // Skip over ops that we know have no effects. if (isKnownNoEffectsOpWithoutInterface(op)) return true; // Collect effect instances the operation. Note that the implementation of // getEffects erases all effect instances that have the type other than the // template parameter so we collect them first in a local buffer and then // copy. if (auto iface = dyn_cast(op)) { SmallVector localEffects; iface.getEffects(localEffects); llvm::append_range(effects, localEffects); return true; } if (op->hasTrait()) { for (auto ®ion : op->getRegions()) { for (auto &block : region) { for (auto &innerOp : block) if (!collectEffects(&innerOp, effects, ignoreBarriers)) return false; } } return true; } // We need to be conservative here in case the op doesn't have the interface // and assume it can have any possible effect. addAllValuelessEffects(effects); return false; } /// Collects memory effects from operations that may be executed before `op` in /// a trivial structured control flow, e.g., without branches. Stops at the /// parallel region boundary or at the barrier operation if `stopAtBarrier` is /// set. Returns `true` if the memory effects added to `effects` are exact, /// `false` if they are a conservative over-approximation. The latter means that /// `effects` contain instances not associated with a specific value. bool getEffectsBefore(Operation *op, SmallVectorImpl &effects, bool stopAtBarrier) { if (!op->getBlock()) return true; // If there is a non-structured control flow, bail. Region *region = op->getBlock()->getParent(); if (region && !llvm::hasSingleElement(region->getBlocks())) { addAllValuelessEffects(effects); return false; } // Collect all effects before the op. if (op != &op->getBlock()->front()) { for (Operation *it = op->getPrevNode(); it != nullptr; it = it->getPrevNode()) { if (isa(it)) { if (stopAtBarrier) return true; else continue; } if (!collectEffects(it, effects)) return false; } } // Stop if reached the parallel region boundary. if (isParallelRegionBoundary(op->getParentOp())) return true; // Otherwise, keep collecting above the parent operation. if (!getEffectsBefore(op->getParentOp(), effects, stopAtBarrier)) return false; // If the op is loop-like, collect effects from the trailing operations until // we hit a barrier because they can executed before the current operation by // the previous iteration of this loop. For example, in the following loop // // for i = ... { // op1 // ... // barrier // op2 // } // // the operation `op2` at iteration `i` is known to be executed before the // operation `op1` at iteration `i+1` and the side effects must be ordered // appropriately. if (isSequentialLoopLike(op->getParentOp())) { // Assuming loop terminators have no side effects. return getEffectsBefore(op->getBlock()->getTerminator(), effects, /*stopAtBarrier=*/true); } // If the parent operation is not guaranteed to execute its (single-block) // region once, walk the block. bool conservative = false; if (!hasSingleExecutionBody(op->getParentOp())) op->getParentOp()->walk([&](Operation *in) { if (conservative) return WalkResult::interrupt(); if (!collectEffects(in, effects)) { conservative = true; return WalkResult::interrupt(); } return WalkResult::advance(); }); return !conservative; } /// Collects memory effects from operations that may be executed after `op` in /// a trivial structured control flow, e.g., without branches. Stops at the /// parallel region boundary or at the barrier operation if `stopAtBarrier` is /// set. Returns `true` if the memory effects added to `effects` are exact, /// `false` if they are a conservative over-approximation. The latter means that /// `effects` contain instances not associated with a specific value. bool getEffectsAfter(Operation *op, SmallVectorImpl &effects, bool stopAtBarrier) { if (!op->getBlock()) return true; // If there is a non-structured control flow, bail. Region *region = op->getBlock()->getParent(); if (region && !llvm::hasSingleElement(region->getBlocks())) { addAllValuelessEffects(effects); return false; } // Collect all effects after the op. if (op != &op->getBlock()->back()) for (Operation *it = op->getNextNode(); it != nullptr; it = it->getNextNode()) { if (isa(it)) { if (stopAtBarrier) return true; continue; } if (!collectEffects(it, effects)) return false; } // Stop if reached the parallel region boundary. if (isParallelRegionBoundary(op->getParentOp())) return true; // Otherwise, keep collecting below the parent operation. if (!getEffectsAfter(op->getParentOp(), effects, stopAtBarrier)) return false; // If the op is loop-like, collect effects from the leading operations until // we hit a barrier because they can executed after the current operation by // the next iteration of this loop. For example, in the following loop // // for i = ... { // op1 // ... // barrier // op2 // } // // the operation `op1` at iteration `i` is known to be executed after the // operation `op2` at iteration `i-1` and the side effects must be ordered // appropriately. if (isSequentialLoopLike(op->getParentOp())) { if (isa(op->getBlock()->front())) return true; bool exact = collectEffects(&op->getBlock()->front(), effects); return getEffectsAfter(&op->getBlock()->front(), effects, /*stopAtBarrier=*/true) && exact; } // If the parent operation is not guaranteed to execute its (single-block) // region once, walk the block. bool conservative = false; if (!hasSingleExecutionBody(op->getParentOp())) op->getParentOp()->walk([&](Operation *in) { if (conservative) return WalkResult::interrupt(); if (!collectEffects(in, effects)) { conservative = true; return WalkResult::interrupt(); } return WalkResult::advance(); }); return !conservative; } /// Looks through known "view-like" ops to find the base memref. static Value getBase(Value v) { while (true) { Operation *definingOp = v.getDefiningOp(); if (!definingOp) break; bool shouldContinue = TypeSwitch(v.getDefiningOp()) .Case( [&](auto op) { v = op.getSource(); return true; }) .Case([&](auto op) { v = op.getIn(); return true; }) .Case([&](auto op) { v = op.getSrc(); return true; }) .Default([](Operation *) { return false; }); if (!shouldContinue) break; } return v; } /// Returns `true` if the value is defined as a function argument. static bool isFunctionArgument(Value v) { auto arg = dyn_cast(v); return arg && isa(arg.getOwner()->getParentOp()); } /// Returns the operand that the operation "propagates" through it for capture /// purposes. That is, if the value produced by this operation is captured, then /// so is the returned value. static Value propagatesCapture(Operation *op) { return llvm::TypeSwitch(op) .Case( [](ViewLikeOpInterface viewLike) { return viewLike.getViewSource(); }) .Case([](CastOpInterface castLike) { return castLike->getOperand(0); }) .Case([](memref::TransposeOp transpose) { return transpose.getIn(); }) .Case( [](auto op) { return op.getSrc(); }) .Default([](Operation *) { return Value(); }); } /// Returns `true` if the given operation is known to capture the given value, /// `false` if it is known not to capture the given value, `nullopt` if neither /// is known. static std::optional getKnownCapturingStatus(Operation *op, Value v) { return llvm::TypeSwitch>(op) // Store-like operations don't capture the destination, but do capture // the value. .Case( [&](auto op) { return op.getValue() == v; }) .Case( [&](auto op) { return op.getValueToStore() == v; }) // These operations are known not to capture. .Case([](memref::DeallocOp) { return false; }) // By default, we don't know anything. .Default([](Operation *) { return std::nullopt; }); } /// Returns `true` if the value may be captured by any of its users, i.e., if /// the user may be storing this value into memory. This makes aliasing analysis /// more conservative as it cannot assume the pointer-like value is only passed /// around through SSA use-def. bool maybeCaptured(Value v) { SmallVector todo = {v}; while (!todo.empty()) { Value v = todo.pop_back_val(); for (Operation *user : v.getUsers()) { // A user that is known to only read cannot capture. auto iface = dyn_cast(user); if (iface) { SmallVector effects; iface.getEffects(effects); if (llvm::all_of(effects, [](const MemoryEffects::EffectInstance &effect) { return isa(effect.getEffect()); })) { continue; } } // When an operation is known to create an alias, consider if the // source is captured as well. if (Value v = propagatesCapture(user)) { todo.push_back(v); continue; } std::optional knownCaptureStatus = getKnownCapturingStatus(user, v); if (!knownCaptureStatus || *knownCaptureStatus) return true; } } return false; } /// Returns true if two values may be referencing aliasing memory. This is a /// rather naive and conservative analysis. Values defined by different /// allocation-like operations as well as values derived from those by casts and /// views cannot alias each other. Similarly, values defined by allocations /// inside a function cannot alias function arguments. Global values cannot /// alias each other or local allocations. Values that are captured, i.e. /// themselves potentially stored in memory, are considered as aliasing with /// everything. This seems sufficient to achieve barrier removal in structured /// control flow, more complex cases would require a proper dataflow analysis. static bool mayAlias(Value first, Value second) { DEBUG_WITH_TYPE(DEBUG_TYPE_ALIAS, { DBGS_ALIAS() << "checking aliasing between "; DBGS_ALIAS() << first << "\n"; DBGS_ALIAS() << " and "; DBGS_ALIAS() << second << "\n"; }); first = getBase(first); second = getBase(second); DEBUG_WITH_TYPE(DEBUG_TYPE_ALIAS, { DBGS_ALIAS() << "base "; DBGS_ALIAS() << first << "\n"; DBGS_ALIAS() << " and "; DBGS_ALIAS() << second << "\n"; }); // Values derived from the same base memref do alias (unless we do a more // advanced analysis to prove non-overlapping accesses). if (first == second) { DEBUG_WITH_TYPE(DEBUG_TYPE_ALIAS, DBGS_ALIAS() << "-> do alias!\n"); return true; } // Different globals cannot alias. if (auto globFirst = first.getDefiningOp()) { if (auto globSecond = second.getDefiningOp()) { return globFirst.getNameAttr() == globSecond.getNameAttr(); } } // Two function arguments marked as noalias do not alias. auto isNoaliasFuncArgument = [](Value value) { auto bbArg = dyn_cast(value); if (!bbArg) return false; auto iface = dyn_cast(bbArg.getOwner()->getParentOp()); if (!iface) return false; // TODO: we need a way to not depend on the LLVM dialect here. return iface.getArgAttr(bbArg.getArgNumber(), "llvm.noalias") != nullptr; }; if (isNoaliasFuncArgument(first) && isNoaliasFuncArgument(second)) return false; bool isDistinct[] = {producesDistinctBase(first.getDefiningOp()), producesDistinctBase(second.getDefiningOp())}; bool isGlobal[] = {first.getDefiningOp() != nullptr, second.getDefiningOp() != nullptr}; // Non-equivalent distinct bases and globals cannot alias. At this point, we // have already filtered out based on values being equal and global name being // equal. if ((isDistinct[0] || isGlobal[0]) && (isDistinct[1] || isGlobal[1])) return false; bool isArg[] = {isFunctionArgument(first), isFunctionArgument(second)}; // Distinct bases (allocations) cannot have been passed as an argument. if ((isDistinct[0] && isArg[1]) || (isDistinct[1] && isArg[0])) return false; // Non-captured base distinct values cannot conflict with another base value. if (isDistinct[0] && !maybeCaptured(first)) return false; if (isDistinct[1] && !maybeCaptured(second)) return false; // Otherwise, conservatively assume aliasing. DEBUG_WITH_TYPE(DEBUG_TYPE_ALIAS, DBGS_ALIAS() << "-> may alias!\n"); return true; } /// Returns `true` if the effect may be affecting memory aliasing the value. If /// the effect is not associated with any value, it is assumed to affect all /// memory and therefore aliases with everything. bool mayAlias(MemoryEffects::EffectInstance a, Value v2) { if (Value v = a.getValue()) { return mayAlias(v, v2); } return true; } /// Returns `true` if the two effects may be affecting aliasing memory. If /// an effect is not associated with any value, it is assumed to affect all /// memory and therefore aliases with everything. Effects on different resources /// cannot alias. bool mayAlias(MemoryEffects::EffectInstance a, MemoryEffects::EffectInstance b) { if (a.getResource()->getResourceID() != b.getResource()->getResourceID()) return false; if (Value v2 = b.getValue()) { return mayAlias(a, v2); } else if (Value v = a.getValue()) { return mayAlias(b, v); } return true; } /// Returns `true` if any of the "before" effect instances has a conflict with /// any "after" instance for the purpose of barrier elimination. The effects are /// supposed to be limited to a barrier synchronization scope. A conflict exists /// if effects instances affect aliasing memory locations and at least on of /// then as a write. As an exception, if the non-write effect is an allocation /// effect, there is no conflict since we are only expected to see the /// allocation happening in the same thread and it cannot be accessed from /// another thread without capture (which we do handle in alias analysis). static bool haveConflictingEffects(ArrayRef beforeEffects, ArrayRef afterEffects) { for (const MemoryEffects::EffectInstance &before : beforeEffects) { for (const MemoryEffects::EffectInstance &after : afterEffects) { // If cannot alias, definitely no conflict. if (!mayAlias(before, after)) continue; // Read/read is not a conflict. if (isa(before.getEffect()) && isa(after.getEffect())) { continue; } // Allocate/* is not a conflict since the allocation happens within the // thread context. // TODO: This is not the case for */Free unless the allocation happened in // the thread context, which we could also check for. if (isa(before.getEffect()) || isa(after.getEffect())) { continue; } // In the particular case that the before effect is a free, we only have 2 // possibilities: // 1. either the program is well-formed and there must be an interleaved // alloc that must limit the scope of effect lookback and we can // safely ignore the free -> read / free -> write and free -> free // conflicts. // 2. either the program is ill-formed and we are in undefined behavior // territory. if (isa(before.getEffect())) continue; // Other kinds of effects create a conflict, e.g. read-after-write. LLVM_DEBUG( DBGS() << "found a conflict between (before): " << before.getValue() << " read:" << isa(before.getEffect()) << " write:" << isa(before.getEffect()) << " alloc:" << isa(before.getEffect()) << " free:" << isa(before.getEffect()) << "\n"); LLVM_DEBUG( DBGS() << "and (after): " << after.getValue() << " read:" << isa(after.getEffect()) << " write:" << isa(after.getEffect()) << " alloc:" << isa(after.getEffect()) << " free:" << isa(after.getEffect()) << "\n"); return true; } } return false; } namespace { /// Barrier elimination pattern. If a barrier does not enforce any conflicting /// pair of memory effects, including a pair that is enforced by another /// barrier, it is unnecessary and can be removed. Adapted from /// "High-Performance GPU-to-CPU Transpilation and Optimization via High-Level /// Parallel Constructs" by Moses, Ivanov, Domke, Endo, Doerfert, and Zinenko in /// PPoPP 2023 and implementation in Polygeist. class BarrierElimination final : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(BarrierOp barrier, PatternRewriter &rewriter) const override { LLVM_DEBUG(DBGS() << "checking the necessity of: " << barrier << " " << barrier.getLoc() << "\n"); SmallVector beforeEffects; getEffectsBefore(barrier, beforeEffects, /*stopAtBarrier=*/true); SmallVector afterEffects; getEffectsAfter(barrier, afterEffects, /*stopAtBarrier=*/true); if (!haveConflictingEffects(beforeEffects, afterEffects)) { LLVM_DEBUG(DBGS() << "the surrounding barriers are sufficient, removing " << barrier << "\n"); rewriter.eraseOp(barrier); return success(); } LLVM_DEBUG(DBGS() << "barrier is necessary: " << barrier << " " << barrier.getLoc() << "\n"); return failure(); } }; } // namespace void EliminateBarriersOp::populatePatterns(RewritePatternSet &patterns) { patterns.insert(getContext()); } //===----------------------------------------------------------------------===// // Block and thread mapping utilities. //===----------------------------------------------------------------------===// namespace { /// Return a flattened thread id for the workgroup with given sizes. static Value buildLinearThreadId(RewriterBase &rewriter, Location loc, ArrayRef blockDimsOfr) { LLVM_DEBUG(llvm::interleaveComma( blockDimsOfr, DBGS() << "----buildLinearThreadId with blockDimsOfr: "); llvm::dbgs() << "\n"); assert(blockDimsOfr.size() == 3 && "expected 3 workgroup sizes"); AffineExpr tx, ty, tz, BDX, BDY; bindDims(rewriter.getContext(), tx, ty, tz); bindSymbols(rewriter.getContext(), BDX, BDY); IndexType indexType = rewriter.getIndexType(); SmallVector threadsAndWorkGroups{ rewriter.create(loc, indexType, Dimension::x).getResult(), rewriter.create(loc, indexType, Dimension::y).getResult(), rewriter.create(loc, indexType, Dimension::z).getResult()}; threadsAndWorkGroups.push_back(blockDimsOfr[0]); threadsAndWorkGroups.push_back(blockDimsOfr[1]); OpFoldResult ofr = affine::makeComposedFoldedAffineApply( rewriter, loc, tx + ty * BDX + tz * BDX * BDY, threadsAndWorkGroups); return getValueOrCreateConstantIndexOp(rewriter, loc, ofr); } /// Builder for gpu::BlockIdOps used in mapping scf.forall to blocks. /// The `idBuilder` method returns 3-D values used for indexing rewrites as well /// as 3-D sizes for predicate generation. struct GpuBlockIdBuilder : public GpuIdBuilder { GpuBlockIdBuilder(MLIRContext *ctx, ArrayRef blockDims, ArrayRef mappingSizes) : GpuIdBuilder(blockDims, mappingSizes) { mappingAttributes = {GPUBlockMappingAttr::get(ctx, Blocks::DimX), GPUBlockMappingAttr::get(ctx, Blocks::DimY), GPUBlockMappingAttr::get(ctx, Blocks::DimZ)}, idBuilder = [](RewriterBase &rewriter, Location loc, ArrayRef forallMappingSizes) { IndexType indexType = rewriter.getIndexType(); SmallVector ids{ rewriter.create(loc, indexType, Dimension::x), rewriter.create(loc, indexType, Dimension::y), rewriter.create(loc, indexType, Dimension::z)}; // Return 3-D ids for indexing rewrite and 3-D sizes and ids for // predicate generation. return IdBuilderResult{ids, SmallVector{forallMappingSizes}, ids}; }; } }; /// Builder for gpu::ThreadIdOp used in mapping scf.forall to thread ids without /// any reindexing. /// The `idBuilder` method returns 3-D values used for indexing rewrites as well /// as 3-D sizes for predicate generation. struct GpuThreadIdBuilder : public GpuIdBuilder { GpuThreadIdBuilder(MLIRContext *ctx, ArrayRef blockDims, ArrayRef mappingSizes) : GpuIdBuilder(blockDims, mappingSizes) { mappingAttributes = {GPUThreadMappingAttr::get(ctx, Threads::DimX), GPUThreadMappingAttr::get(ctx, Threads::DimY), GPUThreadMappingAttr::get(ctx, Threads::DimZ)}; idBuilder = [](RewriterBase &rewriter, Location loc, ArrayRef forallMappingSizes) { IndexType indexType = rewriter.getIndexType(); SmallVector ids{ rewriter.create(loc, indexType, Dimension::x), rewriter.create(loc, indexType, Dimension::y), rewriter.create(loc, indexType, Dimension::z)}; // Return 3-D ids for indexing rewrite and 3-D sizes and ids for // predicate generation. return IdBuilderResult{ids, SmallVector{forallMappingSizes}, ids}; }; } }; /// Builder for warp ids used in mapping scf.forall to warps. /// This builder requires a specification of the number of warps along each /// dimension to more finely control mapping to warps as well a predication than /// by solely analyzing the IR. /// The `idBuilder` method returns 3-D values used for indexing rewrites as well /// as 3-D sizes for predicate generation. struct GpuWarpIdBuilder : public GpuIdBuilder { GpuWarpIdBuilder(MLIRContext *ctx, ArrayRef blockDims, ArrayRef mappingSizes) : GpuIdBuilder(blockDims, mappingSizes) { mappingAttributes = {GPUWarpMappingAttr::get(ctx, Warps::DimX), GPUWarpMappingAttr::get(ctx, Warps::DimY), GPUWarpMappingAttr::get(ctx, Warps::DimZ)}; idBuilder = [this](RewriterBase &rewriter, Location loc, ArrayRef forallMappingSizes) { // Build the linear warp id and decompose it in the basis of // `forallMappingSizes`. Value linearId = buildLinearThreadId(rewriter, loc, this->blockDimsOfr); AffineExpr d0 = getAffineDimExpr(0, rewriter.getContext()); OpFoldResult warpIdOfr = affine::makeComposedFoldedAffineApply( rewriter, loc, d0.floorDiv(kWarpSize), {linearId}); Value warpId = getValueOrCreateConstantIndexOp(rewriter, loc, warpIdOfr); // Sizes in [x, y, z] -> [z, y x] order to properly compute strides in // "row-major" order. SmallVector reverseBasisSizes( llvm::reverse(this->availableMappingSizes)); SmallVector strides = computeStrides(reverseBasisSizes); SmallVector delinearizingExprs = delinearize(d0, strides); SmallVector ids; // Reverse back to be in [x, y, z] order. for (AffineExpr e : llvm::reverse(delinearizingExprs)) ids.push_back( affine::makeComposedAffineApply(rewriter, loc, e, {warpId})); // clang-format off LDBG("----linearId: " << linearId); LDBG("----warpId: " << warpId); LLVM_DEBUG(llvm::interleaveComma(reverseBasisSizes, DBGS() << "--delinearization basis: "); llvm::dbgs() << "\n"; llvm::interleaveComma(strides, DBGS() << "--delinearization strides: "); llvm::dbgs() << "\n"; llvm::interleaveComma(delinearizingExprs, DBGS() << "--delinearization exprs: "); llvm::dbgs() << "\n"; llvm::interleaveComma(ids, DBGS() << "--ids: "); llvm::dbgs() << "\n";); // clang-format on // Return 3-D ids for indexing rewrite and 3-D sizes and ids for // predicate generation. return IdBuilderResult{ids, SmallVector{forallMappingSizes}, ids}; }; } /// Static specification of the warp size. /// In the future this may be configured by the transformation. static constexpr int64_t kWarpSize = 32; }; /// Builder for linear ids used in mapping scf.forall to reindexed threads. /// The `idBuilder` method returns 3-D values used for indexing rewrites as well /// as 1-D sizes for predicate generation. struct GpuLinearIdBuilder : public GpuIdBuilder { GpuLinearIdBuilder(MLIRContext *ctx, ArrayRef blockDims, ArrayRef mappingSizes) : GpuIdBuilder(blockDims, mappingSizes) { mappingAttributes = {GPULinearIdMappingAttr::get(ctx, LinearId::DimX), GPULinearIdMappingAttr::get(ctx, LinearId::DimY), GPULinearIdMappingAttr::get(ctx, LinearId::DimZ)}; idBuilder = [this](RewriterBase &rewriter, Location loc, ArrayRef forallMappingSizes) { // Build the linear thread id and decompose it in the basis of // `forallMappingSizes`. Value linearId = buildLinearThreadId(rewriter, loc, this->blockDimsOfr); // Sizes in [x, y, z] -> [z, y x] order to properly compute strides in // "row-major" order. SmallVector reverseBasisSizes(llvm::reverse(forallMappingSizes)); SmallVector strides = computeStrides(reverseBasisSizes); AffineExpr d0; bindDims(rewriter.getContext(), d0); SmallVector delinearizingExprs = delinearize(d0, strides); SmallVector ids; // Reverse back to be in [x, y, z] order. for (AffineExpr e : llvm::reverse(delinearizingExprs)) ids.push_back( affine::makeComposedAffineApply(rewriter, loc, e, {linearId})); // clang-format off LLVM_DEBUG(llvm::interleaveComma(reverseBasisSizes, DBGS() << "--delinearization basis: "); llvm::dbgs() << "\n"; llvm::interleaveComma(strides, DBGS() << "--delinearization strides: "); llvm::dbgs() << "\n"; llvm::interleaveComma(delinearizingExprs, DBGS() << "--delinearization exprs: "); llvm::dbgs() << "\n"; llvm::interleaveComma(ids, DBGS() << "--ids: "); llvm::dbgs() << "\n";); // clang-format on // Compute and return the 1-D actual mapping size spanned by the linearId, // it will be used to predicate against the linearized total number of // threads. int64_t actualMappingSize = 1; for (int64_t s : forallMappingSizes) actualMappingSize *= s; // Return 3-D ids for indexing rewrite and 1-D size and id for // predicate generation. return IdBuilderResult{ids, SmallVector{actualMappingSize}, SmallVector{linearId}}; }; } }; } // namespace static DiagnosedSilenceableFailure definiteFailureHelper(std::optional transformOp, Operation *target, const Twine &message) { if (transformOp.has_value()) return transformOp->emitDefiniteFailure() << message; return emitDefiniteFailure(target, message); } /// Check if given mapping attributes are one of the desired attributes static DiagnosedSilenceableFailure checkMappingAttributeTypes(std::optional transformOp, scf::ForallOp forallOp) { if (!forallOp.getMapping().has_value()) return definiteFailureHelper(transformOp, forallOp, "mapping must be present"); bool hasBlockMapping = llvm::any_of(forallOp.getMapping().value(), [](Attribute attr) { return isa(attr); }); bool hasThreadMapping = llvm::any_of(forallOp.getMapping().value(), [](Attribute attr) { return isa(attr); }); bool hasWarpMapping = llvm::any_of(forallOp.getMapping().value(), [](Attribute attr) { return isa(attr); }); bool hasLinearMapping = llvm::any_of(forallOp.getMapping().value(), [](Attribute attr) { return isa(attr); }); int64_t countMappingTypes = 0; countMappingTypes += hasBlockMapping ? 1 : 0; countMappingTypes += hasThreadMapping ? 1 : 0; countMappingTypes += hasWarpMapping ? 1 : 0; countMappingTypes += hasLinearMapping ? 1 : 0; if (countMappingTypes > 1) { return definiteFailureHelper( transformOp, forallOp, "cannot mix different mapping types, use nesting"); } DenseSet seen; for (Attribute map : forallOp.getMapping()->getValue()) { if (seen.contains(map)) { return definiteFailureHelper( transformOp, forallOp, "duplicated attribute, cannot map different loops " "to the same processor"); } seen.insert(map); } return DiagnosedSilenceableFailure::success(); } static DiagnosedSilenceableFailure verifyGpuMapping(std::optional transformOp, scf::ForallOp forallOp) { // Check the types of the mapping attributes match. DiagnosedSilenceableFailure typeRes = checkMappingAttributeTypes(transformOp, forallOp); if (!typeRes.succeeded()) return typeRes; // Perform other non-types verifications. if (!forallOp.isNormalized()) return definiteFailureHelper(transformOp, forallOp, "unsupported non-normalized loops"); if (forallOp.getNumResults() > 0) return definiteFailureHelper(transformOp, forallOp, "only bufferized scf.forall can be mapped"); if (forallOp.getRank() > 3) return definiteFailureHelper(transformOp, forallOp, "scf.forall with rank > 3 does not lower"); if (llvm::any_of(forallOp.getMixedUpperBound(), [&](OpFoldResult ofr) { return !getConstantIntValue(ofr).has_value(); })) { return definiteFailureHelper(transformOp, forallOp, "unsupported dynamic sizes in forall op"); } return DiagnosedSilenceableFailure::success(); } /// Determines if the size of the kernel configuration is supported by the /// GPU architecture being used. It presently makes use of CUDA limitations, /// however that aspect may be enhanced for other GPUs. static DiagnosedSilenceableFailure checkGpuLimits( TransformOpInterface transformOp, std::optional gridDimX, std::optional gridDimY, std::optional gridDimZ, std::optional blockDimX, std::optional blockDimY, std::optional blockDimZ) { static constexpr int maxTotalBlockdim = 1024; static constexpr int maxBlockdimx = 1024; static constexpr int maxBlockdimy = 1024; static constexpr int maxBlockdimz = 64; static constexpr int maxTotalGriddim = 2147483647; static constexpr int maxGriddimx = 2147483647; static constexpr int maxGriddimy = 65535; static constexpr int maxGriddimz = 65535; if ((blockDimX.value_or(1) * blockDimY.value_or(1) * blockDimZ.value_or(1)) > maxTotalBlockdim || (gridDimX.value_or(1) * gridDimY.value_or(1) * gridDimZ.value_or(1)) > maxTotalGriddim || blockDimX.value_or(1) > maxBlockdimx || blockDimY.value_or(1) > maxBlockdimy || blockDimZ.value_or(1) > maxBlockdimz || gridDimY.value_or(1) > maxGriddimy || gridDimZ.value_or(1) > maxGriddimz || gridDimX.value_or(1) > maxGriddimx) { return transformOp.emitSilenceableError() << "Trying to launch a GPU kernel with grid_dims = (" << gridDimX.value_or(1) << ", " << gridDimY.value_or(1) << ", " << gridDimZ.value_or(1) << ") block_dims = (" << blockDimX.value_or(1) << ", " << blockDimY.value_or(1) << ", " << blockDimZ.value_or(1) << "). It is larger than the limits."; } return DiagnosedSilenceableFailure::success(); } /// Creates an empty-body gpu::LaunchOp using the provided kernel settings /// and put a terminator within. static DiagnosedSilenceableFailure createGpuLaunch(RewriterBase &rewriter, Location loc, TransformOpInterface transformOp, LaunchOp &launchOp, std::optional gridDimX = std::nullopt, std::optional gridDimY = std::nullopt, std::optional gridDimZ = std::nullopt, std::optional blockDimX = std::nullopt, std::optional blockDimY = std::nullopt, std::optional blockDimZ = std::nullopt) { DiagnosedSilenceableFailure diag = checkGpuLimits(transformOp, gridDimX, gridDimY, gridDimZ, blockDimX, blockDimY, blockDimZ); if (!diag.succeeded()) return diag; auto createConst = [&](int dim) { return rewriter.create(loc, dim); }; OpBuilder::InsertionGuard guard(rewriter); Value one = createConst(1); Value gridSizeX = gridDimX.has_value() ? createConst(gridDimX.value()) : one; Value gridSizeY = gridDimY.has_value() ? createConst(gridDimY.value()) : one; Value gridSizeZ = gridDimZ.has_value() ? createConst(gridDimZ.value()) : one; Value blkSizeX = blockDimX.has_value() ? createConst(blockDimX.value()) : one; Value blkSizeY = blockDimY.has_value() ? createConst(blockDimY.value()) : one; Value blkSizeZ = blockDimZ.has_value() ? createConst(blockDimZ.value()) : one; launchOp = rewriter.create(loc, gridSizeX, gridSizeY, gridSizeZ, blkSizeX, blkSizeY, blkSizeZ); rewriter.setInsertionPointToEnd(&launchOp.getBody().front()); rewriter.create(loc); return DiagnosedSilenceableFailure::success(); } /// Alter kernel configuration of the given kernel. static DiagnosedSilenceableFailure alterGpuLaunch(RewriterBase &rewriter, LaunchOp gpuLaunch, TransformOpInterface transformOp, std::optional gridDimX = std::nullopt, std::optional gridDimY = std::nullopt, std::optional gridDimZ = std::nullopt, std::optional blockDimX = std::nullopt, std::optional blockDimY = std::nullopt, std::optional blockDimZ = std::nullopt) { DiagnosedSilenceableFailure diag = checkGpuLimits(transformOp, gridDimX, gridDimY, gridDimZ, blockDimX, blockDimY, blockDimZ); if (!diag.succeeded()) return diag; KernelDim3 currentBlockdim = gpuLaunch.getBlockSizeOperandValues(); OpBuilder::InsertionGuard guard(rewriter); rewriter.setInsertionPointAfterValue(currentBlockdim.x); auto createConstValue = [&](int dim) { return rewriter.create(currentBlockdim.x.getLoc(), dim); }; if (gridDimX.has_value()) gpuLaunch.getGridSizeXMutable().assign(createConstValue(gridDimX.value())); if (gridDimY.has_value()) gpuLaunch.getGridSizeYMutable().assign(createConstValue(gridDimY.value())); if (gridDimZ.has_value()) gpuLaunch.getGridSizeZMutable().assign(createConstValue(gridDimZ.value())); if (blockDimX.has_value()) gpuLaunch.getBlockSizeXMutable().assign( createConstValue(blockDimX.value())); if (blockDimY.has_value()) gpuLaunch.getBlockSizeYMutable().assign( createConstValue(blockDimY.value())); if (blockDimZ.has_value()) gpuLaunch.getBlockSizeZMutable().assign( createConstValue(blockDimZ.value())); return DiagnosedSilenceableFailure::success(); } /// Struct to return the result of the rewrite of a forall operation. struct ForallRewriteResult { SmallVector mappingSizes; SmallVector mappingIds; }; /// Helper to replace ids of dimensions known to be 1 by 0 to simplify the IR. template static void replaceUnitMappingIdsHelper(RewriterBase &rewriter, Location loc, OperationOrBlock *parent, Value replacement, ArrayRef availableMappingSizes) { parent->walk([&](OpTy idOp) { if (availableMappingSizes[static_cast(idOp.getDimension())] == 1) rewriter.replaceAllUsesWith(idOp.getResult(), replacement); }); } static DiagnosedSilenceableFailure rewriteOneForallCommonImpl( RewriterBase &rewriter, std::optional transformOp, scf::ForallOp forallOp, ForallRewriteResult &result, ArrayRef availableMappingSizes, const GpuIdBuilder &gpuIdBuilder) { LDBG("--start rewriteOneForallCommonImpl"); // Step 0. GPU-specific verifications. There is no better place to anchor // those right now: the ForallOp is target-independent and the transform // op does not apply to individual ForallOp. DiagnosedSilenceableFailure diag = verifyGpuMapping(transformOp, forallOp); if (!diag.succeeded()) return diag; // Step 1. Complete the mapping to a full mapping (with 1s) if necessary. SmallVector tmpMappingSizes = llvm::to_vector( llvm::map_range(forallOp.getMixedUpperBound(), [](OpFoldResult ofr) { auto maybeStaticValue = getConstantIntValue(ofr); assert(maybeStaticValue && "expected static value"); return maybeStaticValue.value(); })); SmallVector forallMappingAttrs = llvm::to_vector(forallOp.getMapping()->getValue()); for (auto attr : gpuIdBuilder.mappingAttributes) { if (llvm::is_contained(forallMappingAttrs, attr)) continue; forallMappingAttrs.push_back(attr); tmpMappingSizes.push_back(1); } LLVM_DEBUG( llvm::interleaveComma( tmpMappingSizes, DBGS() << "----tmpMappingSizes extracted from scf.forall op: "); llvm::dbgs() << "\n"); // Step 2. sort the values by the corresponding DeviceMappingAttrInterface. auto comparator = [&](Attribute a, Attribute b) -> bool { return cast(a).getMappingId() < cast(b).getMappingId(); }; SmallVector forallMappingSizes = getValuesSortedByKey(forallMappingAttrs, tmpMappingSizes, comparator); LLVM_DEBUG(llvm::interleaveComma(forallMappingSizes, DBGS() << "----forallMappingSizes: "); llvm::dbgs() << "\n"; llvm::interleaveComma( forallMappingAttrs, DBGS() << "----mappingAttrs: "); llvm::dbgs() << "\n"); // Step 3. Generate the mappingIdOps using the provided generator. Location loc = forallOp.getLoc(); OpBuilder::InsertionGuard guard(rewriter); rewriter.setInsertionPoint(forallOp); IdBuilderResult builderResult = gpuIdBuilder.idBuilder(rewriter, loc, forallMappingSizes); // Step 4. Map the induction variables to the mappingIdOps, this may involve a // permutation. SmallVector mappingIdOps = builderResult.mappingIdOps; IRMapping bvm; for (auto [iv, dim] : llvm::zip_equal(forallOp.getInductionVars(), ArrayRef{forallMappingAttrs}.take_front( forallOp.getInductionVars().size()))) { Value peIdOp = mappingIdOps[static_cast( cast(dim).getMappingId())]; bvm.map(iv, peIdOp); } // Step 5. If the availableMappingSizes are already known, create conditionals // to predicate the region. Otherwise, the current forall determines the // availableMappingSizes and no predication occurs. Value predicate; if (!availableMappingSizes.empty()) { SmallVector predicateMappingSizes = builderResult.predicateMappingSizes; SmallVector predicateIdOps = builderResult.predicateIdOps; // clang-format off LLVM_DEBUG( llvm::interleaveComma( predicateMappingSizes, DBGS() << "----predicateMappingSizes: "); llvm::dbgs() << "\n"; llvm::interleaveComma( availableMappingSizes, DBGS() << "----availableMappingSizes: "); llvm::dbgs() << "\n"; llvm::interleaveComma(predicateIdOps, DBGS() << "----predicateIdOps: "); llvm::dbgs() << "\n"); // clang-format on for (auto [id, mappingSize, availableMappingSize] : llvm::zip_equal( predicateIdOps, predicateMappingSizes, availableMappingSizes)) { if (mappingSize > availableMappingSize) { return definiteFailureHelper( transformOp, forallOp, "Trying to map to fewer GPU threads than loop iterations but " "overprovisioning is not yet supported. " "Try additional tiling of the before mapping or map to more " "threads."); } if (mappingSize == availableMappingSize) continue; Value idx = rewriter.create(loc, mappingSize); Value tmpPredicate = rewriter.create( loc, arith::CmpIPredicate::ult, id, idx); LDBG("----predicate: " << tmpPredicate); predicate = predicate ? rewriter.create(loc, predicate, tmpPredicate) : tmpPredicate; } } // Step 6. Move the body of forallOp. // Erase the terminator first, it will not be used. rewriter.eraseOp(forallOp.getTerminator()); Block *targetBlock; Block::iterator insertionPoint; if (predicate) { // Step 6.a. If predicated, move at the beginning. auto ifOp = rewriter.create(loc, predicate, /*withElseRegion=*/false); targetBlock = ifOp.thenBlock(); insertionPoint = ifOp.thenBlock()->begin(); } else { // Step 6.b. Otherwise, move inline just at the rewriter insertion // point. targetBlock = forallOp->getBlock(); insertionPoint = rewriter.getInsertionPoint(); } Block &sourceBlock = forallOp.getRegion().front(); targetBlock->getOperations().splice(insertionPoint, sourceBlock.getOperations()); // Step 7. RAUW indices. for (Value loopIndex : forallOp.getInductionVars()) { Value threadIdx = bvm.lookup(loopIndex); rewriter.replaceAllUsesWith(loopIndex, threadIdx); } // Step 8. Erase old op. rewriter.eraseOp(forallOp); result = ForallRewriteResult{forallMappingSizes, mappingIdOps}; return DiagnosedSilenceableFailure::success(); } //===----------------------------------------------------------------------===// // MapForallToBlocks //===----------------------------------------------------------------------===// DiagnosedSilenceableFailure mlir::transform::gpu::mapForallToBlocksImpl( RewriterBase &rewriter, TransformOpInterface transformOp, scf::ForallOp forallOp, SmallVectorImpl &gridDims, const GpuIdBuilder &gpuIdBuilder) { LDBG("Start mapForallToBlocksImpl"); Location loc = forallOp.getLoc(); Block *parentBlock = forallOp->getBlock(); Value zero; { // Create an early zero index value for replacements and immediately reset // the insertion point. OpBuilder::InsertionGuard guard(rewriter); rewriter.setInsertionPointToStart(parentBlock); zero = rewriter.create(loc, 0); } SmallVector anyAvailableMappingSizes; ForallRewriteResult rewriteResult; // Pass an empty anyAvailableMappingSizes. DiagnosedSilenceableFailure diag = rewriteOneForallCommonImpl(rewriter, transformOp, forallOp, rewriteResult, anyAvailableMappingSizes, gpuIdBuilder); // Return if anything goes wrong, use silenceable failure as a match failure. if (!diag.succeeded()) return diag; // Set the gridDims that act as a return. gridDims = rewriteResult.mappingSizes; // Replace ids of dimensions known to be 1 by 0 to simplify the IR. // Here, the result of mapping determines the available mapping sizes. replaceUnitMappingIdsHelper(rewriter, loc, parentBlock, zero, gridDims); return DiagnosedSilenceableFailure::success(); } DiagnosedSilenceableFailure mlir::transform::gpu::findTopLevelForallOp(Operation *target, scf::ForallOp &topLevelForallOp, TransformOpInterface transformOp) { auto walkResult = target->walk([&](scf::ForallOp forallOp) { if (forallOp->getParentOfType()) return WalkResult::advance(); if (topLevelForallOp) // TODO: Handle multiple forall if they are independent. return WalkResult::interrupt(); topLevelForallOp = forallOp; return WalkResult::advance(); }); if (walkResult.wasInterrupted()) return transformOp.emitSilenceableError() << "could not find a unique topLevel scf.forall"; return DiagnosedSilenceableFailure::success(); } DiagnosedSilenceableFailure transform::MapForallToBlocks::applyToOne( transform::TransformRewriter &rewriter, Operation *target, ApplyToEachResultList &results, transform::TransformState &state) { LaunchOp gpuLaunch = dyn_cast(target); auto transformOp = cast(getOperation()); if (!getGenerateGpuLaunch() && !gpuLaunch) { DiagnosedSilenceableFailure diag = emitSilenceableError() << "Given target is not gpu.launch, set `generate_gpu_launch` " "attribute"; diag.attachNote(target->getLoc()) << "when applied to this payload op"; return diag; } scf::ForallOp topLevelForallOp; DiagnosedSilenceableFailure diag = mlir::transform::gpu::findTopLevelForallOp( target, topLevelForallOp, transformOp); if (!diag.succeeded()) { diag.attachNote(target->getLoc()) << "when applied to this payload op"; return diag; } SmallVector gridDims{getGridDims()}; if (!getGenerateGpuLaunch() && gridDims.size() != 3) return transformOp.emitDefiniteFailure("transform require size-3 mapping"); OpBuilder::InsertionGuard guard(rewriter); rewriter.setInsertionPoint(topLevelForallOp); // Generate gpu launch here and move the forall inside if (getGenerateGpuLaunch()) { DiagnosedSilenceableFailure diag = createGpuLaunch(rewriter, target->getLoc(), transformOp, gpuLaunch); if (!diag.succeeded()) { return diag; } rewriter.setInsertionPointToStart(&gpuLaunch.getBody().front()); Operation *newForallOp = rewriter.clone(*topLevelForallOp); rewriter.eraseOp(topLevelForallOp); topLevelForallOp = cast(newForallOp); } GpuBlockIdBuilder gpuBlockIdBuilder(getContext(), {}, {}); diag = mlir::transform::gpu::mapForallToBlocksImpl( rewriter, transformOp, topLevelForallOp, gridDims, gpuBlockIdBuilder); if (!diag.succeeded()) return diag; // Set the GPU launch configuration for the grid dims late, this is subject to // IR inspection. diag = alterGpuLaunch(rewriter, gpuLaunch, cast(getOperation()), gridDims[0], gridDims[1], gridDims[2]); results.push_back(gpuLaunch); return diag; } //===----------------------------------------------------------------------===// // MapNestedForallToThreads //===----------------------------------------------------------------------===// DiagnosedSilenceableFailure mlir::transform::gpu::mapOneForallToThreadsImpl( RewriterBase &rewriter, std::optional transformOp, scf::ForallOp forallOp, ArrayRef availableMappingSizes, bool syncAfterDistribute, const GpuIdBuilder &gpuIdBuilder) { // Ignore cases with different attributes than this builder supports. for (Attribute map : forallOp.getMapping()->getValue()) { if (!llvm::is_contained(gpuIdBuilder.mappingAttributes, map)) { LDBG("--skip " << map); LLVM_DEBUG(llvm::interleaveComma(gpuIdBuilder.mappingAttributes, DBGS() << "----not in: "); llvm::dbgs() << "\n";); return emitSilenceableFailure(forallOp); } } Location loc = forallOp.getLoc(); OpBuilder::InsertionGuard g(rewriter); // Insert after to allow for syncthreads after `forall` is erased. rewriter.setInsertionPointAfter(forallOp); ForallRewriteResult rewriteResult; DiagnosedSilenceableFailure diag = rewriteOneForallCommonImpl(rewriter, transformOp, forallOp, rewriteResult, availableMappingSizes, gpuIdBuilder); // Return if anything goes wrong, use silenceable failure as a match failure. if (!diag.succeeded()) return diag; // Add a syncthreads if needed. TODO: warpsync if (syncAfterDistribute) rewriter.create(loc); return DiagnosedSilenceableFailure::success(); } DiagnosedSilenceableFailure mlir::transform::gpu::mapNestedForallToThreadsImpl( RewriterBase &rewriter, std::optional transformOp, Operation *target, ArrayRef blockDims, ArrayRef warpDims, bool syncAfterDistribute) { LDBG("Start mapNestedForallToThreadsImpl"); MLIRContext *ctx = rewriter.getContext(); SmallVector blockDimsOfr = getAsIndexOpFoldResult(ctx, blockDims); if (blockDims.size() != 3) return definiteFailureHelper(transformOp, target, "requires size-3 thread mapping"); if (!warpDims.empty()) { if (warpDims.size() != 3) return definiteFailureHelper(transformOp, target, "requires empty or size-3 warp mapping"); } // Create an early zero index value for replacements. Location loc = target->getLoc(); Value zero = rewriter.create(loc, 0); DiagnosedSilenceableFailure diag = DiagnosedSilenceableFailure::success(); WalkResult walkResult = target->walk([&](scf::ForallOp forallOp) { //===--------------------------------------------------------------------===// // Mapping to warp ids. //===--------------------------------------------------------------------===// if (!warpDims.empty()) { LLVM_DEBUG( llvm::interleaveComma( warpDims, DBGS() << "+mapNestedForallToThreadsImpl warpDims: "); llvm::dbgs() << "\n"); LLVM_DEBUG(llvm::interleaveComma( blockDimsOfr, DBGS() << "--warpDims with blockDimsOfr: "); llvm::dbgs() << "\n"); GpuWarpIdBuilder gpuWarpIdBuilder(ctx, blockDimsOfr, warpDims); diag = mlir::transform::gpu::mapOneForallToThreadsImpl( rewriter, transformOp, forallOp, warpDims, syncAfterDistribute, gpuWarpIdBuilder); // Use silenceable failure to encode "failure to match" and pass // through. if (diag.isDefiniteFailure()) return WalkResult::interrupt(); if (diag.succeeded()) return WalkResult::skip(); } //===--------------------------------------------------------------------===// // Mapping to linear ids. //===--------------------------------------------------------------------===// LDBG("+mapNestedForallToThreadsImpl linearDims"); LLVM_DEBUG(llvm::interleaveComma( blockDimsOfr, DBGS() << "--linearDims with blockDimsOfr: "); llvm::dbgs() << "\n"); int64_t numThreads = 1; for (int64_t b : blockDims) numThreads *= b; GpuLinearIdBuilder gpuLinearIdBuilder(ctx, blockDimsOfr, numThreads); diag = mlir::transform::gpu::mapOneForallToThreadsImpl( rewriter, transformOp, forallOp, numThreads, syncAfterDistribute, gpuLinearIdBuilder); // Use silenceable failure to encode "failure to match" and pass through. if (diag.isDefiniteFailure()) return WalkResult::interrupt(); if (diag.succeeded()) return WalkResult::skip(); //===--------------------------------------------------------------------===// // Mapping to block ids (happens last so we can replay ThreadIdOp). //===--------------------------------------------------------------------===// LLVM_DEBUG( llvm::interleaveComma( blockDimsOfr, DBGS() << "mapNestedForallToThreadsImpl blockDims: "); llvm::dbgs() << "\n"); GpuThreadIdBuilder gpuThreadIdBuilder(ctx, blockDimsOfr, blockDims); diag = mlir::transform::gpu::mapOneForallToThreadsImpl( rewriter, transformOp, forallOp, blockDims, syncAfterDistribute, gpuThreadIdBuilder); // Use silenceable failure to encode "failure to match" and pass through. if (diag.isDefiniteFailure()) return WalkResult::interrupt(); return WalkResult::advance(); }); if (walkResult.wasInterrupted()) return diag; // Replace ids of dimensions known to be 1 by 0 to simplify the IR. // Here, the result of mapping determines the available mapping sizes. replaceUnitMappingIdsHelper(rewriter, loc, target, zero, blockDims); return DiagnosedSilenceableFailure::success(); } DiagnosedSilenceableFailure transform::MapNestedForallToThreads::applyToOne( transform::TransformRewriter &rewriter, Operation *target, ApplyToEachResultList &results, TransformState &state) { LaunchOp gpuLaunch = dyn_cast(target); auto transformOp = cast(getOperation()); // Basic high-level verifications. if (!gpuLaunch) return emitSilenceableError() << "Given target is not a gpu.launch"; // Mapping to block ids. SmallVector blockDims{getBlockDims()}; DiagnosedSilenceableFailure diag = checkGpuLimits(transformOp, std::nullopt, std::nullopt, std::nullopt, blockDims[0], blockDims[1], blockDims[2]); if (diag.isSilenceableFailure()) { diag.attachNote(getLoc()) << getBlockDimsAttrName() << " is too large"; return diag; } // Set the GPU launch configuration for the block dims early, this is not // subject to IR inspection. diag = alterGpuLaunch(rewriter, gpuLaunch, transformOp, std::nullopt, std::nullopt, std::nullopt, blockDims[0], blockDims[1], blockDims[2]); rewriter.setInsertionPointToStart(&gpuLaunch.getBody().front()); diag = mapNestedForallToThreadsImpl(rewriter, transformOp, gpuLaunch, blockDims, getWarpDims(), getSyncAfterDistribute()); results.push_back(gpuLaunch.getOperation()); return diag; } //===----------------------------------------------------------------------===// // Transform op registration //===----------------------------------------------------------------------===// namespace { /// Registers new ops and declares PDL as dependent dialect since the /// additional ops are using PDL types for operands and results. class GPUTransformDialectExtension : public transform::TransformDialectExtension< GPUTransformDialectExtension> { public: GPUTransformDialectExtension() { declareGeneratedDialect(); declareGeneratedDialect(); declareGeneratedDialect(); registerTransformOps< #define GET_OP_LIST #include "mlir/Dialect/GPU/TransformOps/GPUTransformOps.cpp.inc" >(); } }; } // namespace #define GET_OP_CLASSES #include "mlir/Dialect/GPU/TransformOps/GPUTransformOps.cpp.inc" void mlir::gpu::registerTransformDialectExtension(DialectRegistry ®istry) { registry.addExtensions(); }