//===- IRDLLoading.cpp - IRDL dialect loading --------------------- C++ -*-===// // // This file is licensed under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Manages the loading of MLIR objects from IRDL operations. // //===----------------------------------------------------------------------===// #include "mlir/Dialect/IRDL/IRDLLoading.h" #include "mlir/Dialect/IRDL/IR/IRDL.h" #include "mlir/Dialect/IRDL/IR/IRDLInterfaces.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/ExtensibleDialect.h" #include "mlir/IR/OperationSupport.h" #include "mlir/Support/LogicalResult.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/Support/SMLoc.h" using namespace mlir; using namespace mlir::irdl; /// Verify that the given list of parameters satisfy the given constraints. /// This encodes the logic of the verification method for attributes and types /// defined with IRDL. static LogicalResult irdlAttrOrTypeVerifier(function_ref emitError, ArrayRef params, ArrayRef> constraints, ArrayRef paramConstraints) { if (params.size() != paramConstraints.size()) { emitError() << "expected " << paramConstraints.size() << " type arguments, but had " << params.size(); return failure(); } ConstraintVerifier verifier(constraints); // Check that each parameter satisfies its constraint. for (auto [i, param] : enumerate(params)) if (failed(verifier.verify(emitError, param, paramConstraints[i]))) return failure(); return success(); } /// Verify that the given operation satisfies the given constraints. /// This encodes the logic of the verification method for operations defined /// with IRDL. static LogicalResult irdlOpVerifier(Operation *op, ArrayRef> constraints, ArrayRef operandConstrs, ArrayRef resultConstrs, const DenseMap &attributeConstrs) { /// Check that we have the right number of operands. unsigned numOperands = op->getNumOperands(); size_t numExpectedOperands = operandConstrs.size(); if (numOperands != numExpectedOperands) return op->emitOpError() << numExpectedOperands << " operands expected, but got " << numOperands; /// Check that we have the right number of results. unsigned numResults = op->getNumResults(); size_t numExpectedResults = resultConstrs.size(); if (numResults != numExpectedResults) return op->emitOpError() << numExpectedResults << " results expected, but got " << numResults; auto emitError = [op] { return op->emitError(); }; ConstraintVerifier verifier(constraints); /// Сheck that we have all needed attributes passed /// and they satisfy the constraints. DictionaryAttr actualAttrs = op->getAttrDictionary(); for (auto [name, constraint] : attributeConstrs) { /// First, check if the attribute actually passed. std::optional actual = actualAttrs.getNamed(name); if (!actual.has_value()) return op->emitOpError() << "attribute " << name << " is expected but not provided"; /// Then, check if the attribute value satisfies the constraint. if (failed(verifier.verify({emitError}, actual->getValue(), constraint))) return failure(); } /// Check that all operands satisfy the constraints. for (auto [i, operandType] : enumerate(op->getOperandTypes())) if (failed(verifier.verify({emitError}, TypeAttr::get(operandType), operandConstrs[i]))) return failure(); /// Check that all results satisfy the constraints. for (auto [i, resultType] : enumerate(op->getResultTypes())) if (failed(verifier.verify({emitError}, TypeAttr::get(resultType), resultConstrs[i]))) return failure(); return success(); } /// Define and load an operation represented by a `irdl.operation` /// operation. static WalkResult loadOperation( OperationOp op, ExtensibleDialect *dialect, DenseMap> &types, DenseMap> &attrs) { // Resolve SSA values to verifier constraint slots SmallVector constrToValue; for (Operation &op : op->getRegion(0).getOps()) { if (isa(op)) { if (op.getNumResults() != 1) return op.emitError() << "IRDL constraint operations must have exactly one result"; constrToValue.push_back(op.getResult(0)); } } // Build the verifiers for each constraint slot SmallVector> constraints; for (Value v : constrToValue) { VerifyConstraintInterface op = cast(v.getDefiningOp()); std::unique_ptr verifier = op.getVerifier(constrToValue, types, attrs); if (!verifier) return WalkResult::interrupt(); constraints.push_back(std::move(verifier)); } SmallVector operandConstraints; SmallVector resultConstraints; // Gather which constraint slots correspond to operand constraints auto operandsOp = op.getOp(); if (operandsOp.has_value()) { operandConstraints.reserve(operandsOp->getArgs().size()); for (Value operand : operandsOp->getArgs()) { for (auto [i, constr] : enumerate(constrToValue)) { if (constr == operand) { operandConstraints.push_back(i); break; } } } } // Gather which constraint slots correspond to result constraints auto resultsOp = op.getOp(); if (resultsOp.has_value()) { resultConstraints.reserve(resultsOp->getArgs().size()); for (Value result : resultsOp->getArgs()) { for (auto [i, constr] : enumerate(constrToValue)) { if (constr == result) { resultConstraints.push_back(i); break; } } } } // Gather which constraint slots correspond to attributes constraints DenseMap attributesContraints; auto attributesOp = op.getOp(); if (attributesOp.has_value()) { const Operation::operand_range values = attributesOp->getAttributeValues(); const ArrayAttr names = attributesOp->getAttributeValueNames(); for (const auto &[name, value] : llvm::zip(names, values)) { for (auto [i, constr] : enumerate(constrToValue)) { if (constr == value) { attributesContraints[name.cast()] = i; break; } } } } // IRDL does not support defining custom parsers or printers. auto parser = [](OpAsmParser &parser, OperationState &result) { return failure(); }; auto printer = [](Operation *op, OpAsmPrinter &printer, StringRef) { printer.printGenericOp(op); }; auto verifier = [constraints{std::move(constraints)}, operandConstraints{std::move(operandConstraints)}, resultConstraints{std::move(resultConstraints)}, attributesContraints{std::move(attributesContraints)}](Operation *op) { return irdlOpVerifier(op, constraints, operandConstraints, resultConstraints, attributesContraints); }; // IRDL does not support defining regions. auto regionVerifier = [](Operation *op) { return success(); }; auto opDef = DynamicOpDefinition::get( op.getName(), dialect, std::move(verifier), std::move(regionVerifier), std::move(parser), std::move(printer)); dialect->registerDynamicOp(std::move(opDef)); return WalkResult::advance(); } /// Get the verifier of a type or attribute definition. /// Return nullptr if the definition is invalid. static DynamicAttrDefinition::VerifierFn getAttrOrTypeVerifier( Operation *attrOrTypeDef, ExtensibleDialect *dialect, DenseMap> &types, DenseMap> &attrs) { assert((isa(attrOrTypeDef) || isa(attrOrTypeDef)) && "Expected an attribute or type definition"); // Resolve SSA values to verifier constraint slots SmallVector constrToValue; for (Operation &op : attrOrTypeDef->getRegion(0).getOps()) { if (isa(op)) { assert(op.getNumResults() == 1 && "IRDL constraint operations must have exactly one result"); constrToValue.push_back(op.getResult(0)); } } // Build the verifiers for each constraint slot SmallVector> constraints; for (Value v : constrToValue) { VerifyConstraintInterface op = cast(v.getDefiningOp()); std::unique_ptr verifier = op.getVerifier(constrToValue, types, attrs); if (!verifier) return {}; constraints.push_back(std::move(verifier)); } // Get the parameter definitions. std::optional params; if (auto attr = dyn_cast(attrOrTypeDef)) params = attr.getOp(); else if (auto type = dyn_cast(attrOrTypeDef)) params = type.getOp(); // Gather which constraint slots correspond to parameter constraints SmallVector paramConstraints; if (params.has_value()) { paramConstraints.reserve(params->getArgs().size()); for (Value param : params->getArgs()) { for (auto [i, constr] : enumerate(constrToValue)) { if (constr == param) { paramConstraints.push_back(i); break; } } } } auto verifier = [paramConstraints{std::move(paramConstraints)}, constraints{std::move(constraints)}]( function_ref emitError, ArrayRef params) { return irdlAttrOrTypeVerifier(emitError, params, constraints, paramConstraints); }; // While the `std::move` is not required, not adding it triggers a bug in // clang-10. return std::move(verifier); } /// Get the possible bases of a constraint. Return `true` if all bases can /// potentially be matched. /// A base is a type or an attribute definition. For instance, the base of /// `irdl.parametric "!builtin.complex"(...)` is `builtin.complex`. /// This function returns the following information through arguments: /// - `paramIds`: the set of type or attribute IDs that are used as bases. /// - `paramIrdlOps`: the set of IRDL operations that are used as bases. /// - `isIds`: the set of type or attribute IDs that are used in `irdl.is` /// constraints. static bool getBases(Operation *op, SmallPtrSet ¶mIds, SmallPtrSet ¶mIrdlOps, SmallPtrSet &isIds) { // For `irdl.any_of`, we get the bases from all its arguments. if (auto anyOf = dyn_cast(op)) { bool has_any = false; for (Value arg : anyOf.getArgs()) has_any &= getBases(arg.getDefiningOp(), paramIds, paramIrdlOps, isIds); return has_any; } // For `irdl.all_of`, we get the bases from the first argument. // This is restrictive, but we can relax it later if needed. if (auto allOf = dyn_cast(op)) return getBases(allOf.getArgs()[0].getDefiningOp(), paramIds, paramIrdlOps, isIds); // For `irdl.parametric`, we get directly the base from the operation. if (auto params = dyn_cast(op)) { SymbolRefAttr symRef = params.getBaseType(); Operation *defOp = SymbolTable::lookupNearestSymbolFrom(op, symRef); assert(defOp && "symbol reference should refer to an existing operation"); paramIrdlOps.insert(defOp); return false; } // For `irdl.is`, we get the base TypeID directly. if (auto is = dyn_cast(op)) { Attribute expected = is.getExpected(); isIds.insert(expected.getTypeID()); return false; } // For `irdl.any`, we return `false` since we can match any type or attribute // base. if (auto isA = dyn_cast(op)) return true; llvm_unreachable("unknown IRDL constraint"); } /// Check that an any_of is in the subset IRDL can handle. /// IRDL uses a greedy algorithm to match constraints. This means that if we /// encounter an `any_of` with multiple constraints, we will match the first /// constraint that is satisfied. Thus, the order of constraints matter in /// `any_of` with our current algorithm. /// In order to make the order of constraints irrelevant, we require that /// all `any_of` constraint parameters are disjoint. For this, we check that /// the base parameters are all disjoints between `parametric` operations, and /// that they are disjoint between `parametric` and `is` operations. /// This restriction will be relaxed in the future, when we will change our /// algorithm to be non-greedy. static LogicalResult checkCorrectAnyOf(AnyOfOp anyOf) { SmallPtrSet paramIds; SmallPtrSet paramIrdlOps; SmallPtrSet isIds; for (Value arg : anyOf.getArgs()) { Operation *argOp = arg.getDefiningOp(); SmallPtrSet argParamIds; SmallPtrSet argParamIrdlOps; SmallPtrSet argIsIds; // Get the bases of this argument. If it can match any type or attribute, // then our `any_of` should not be allowed. if (getBases(argOp, argParamIds, argParamIrdlOps, argIsIds)) return failure(); // We check that the base parameters are all disjoints between `parametric` // operations, and that they are disjoint between `parametric` and `is` // operations. for (TypeID id : argParamIds) { if (isIds.count(id)) return failure(); bool inserted = paramIds.insert(id).second; if (!inserted) return failure(); } // We check that the base parameters are all disjoints with `irdl.is` // operations. for (TypeID id : isIds) { if (paramIds.count(id)) return failure(); isIds.insert(id); } // We check that all `parametric` operations are disjoint. We do not // need to check that they are disjoint with `is` operations, since // `is` operations cannot refer to attributes defined with `irdl.parametric` // operations. for (Operation *op : argParamIrdlOps) { bool inserted = paramIrdlOps.insert(op).second; if (!inserted) return failure(); } } return success(); } /// Load all dialects in the given module, without loading any operation, type /// or attribute definitions. static DenseMap loadEmptyDialects(ModuleOp op) { DenseMap dialects; op.walk([&](DialectOp dialectOp) { MLIRContext *ctx = dialectOp.getContext(); StringRef dialectName = dialectOp.getName(); DynamicDialect *dialect = ctx->getOrLoadDynamicDialect( dialectName, [](DynamicDialect *dialect) {}); dialects.insert({dialectOp, dialect}); }); return dialects; } /// Preallocate type definitions objects with empty verifiers. /// This in particular allocates a TypeID for each type definition. static DenseMap> preallocateTypeDefs(ModuleOp op, DenseMap dialects) { DenseMap> typeDefs; op.walk([&](TypeOp typeOp) { ExtensibleDialect *dialect = dialects[typeOp.getParentOp()]; auto typeDef = DynamicTypeDefinition::get( typeOp.getName(), dialect, [](function_ref, ArrayRef) { return success(); }); typeDefs.try_emplace(typeOp, std::move(typeDef)); }); return typeDefs; } /// Preallocate attribute definitions objects with empty verifiers. /// This in particular allocates a TypeID for each attribute definition. static DenseMap> preallocateAttrDefs(ModuleOp op, DenseMap dialects) { DenseMap> attrDefs; op.walk([&](AttributeOp attrOp) { ExtensibleDialect *dialect = dialects[attrOp.getParentOp()]; auto attrDef = DynamicAttrDefinition::get( attrOp.getName(), dialect, [](function_ref, ArrayRef) { return success(); }); attrDefs.try_emplace(attrOp, std::move(attrDef)); }); return attrDefs; } LogicalResult mlir::irdl::loadDialects(ModuleOp op) { // First, check that all any_of constraints are in a correct form. // This is to ensure we can do the verification correctly. WalkResult anyOfCorrects = op.walk( [](AnyOfOp anyOf) { return (WalkResult)checkCorrectAnyOf(anyOf); }); if (anyOfCorrects.wasInterrupted()) return op.emitError("any_of constraints are not in the correct form"); // Preallocate all dialects, and type and attribute definitions. // In particular, this allocates TypeIDs so type and attributes can have // verifiers that refer to each other. DenseMap dialects = loadEmptyDialects(op); DenseMap> types = preallocateTypeDefs(op, dialects); DenseMap> attrs = preallocateAttrDefs(op, dialects); // Set the verifier for types. WalkResult res = op.walk([&](TypeOp typeOp) { DynamicAttrDefinition::VerifierFn verifier = getAttrOrTypeVerifier( typeOp, dialects[typeOp.getParentOp()], types, attrs); if (!verifier) return WalkResult::interrupt(); types[typeOp]->setVerifyFn(std::move(verifier)); return WalkResult::advance(); }); if (res.wasInterrupted()) return failure(); // Set the verifier for attributes. res = op.walk([&](AttributeOp attrOp) { DynamicAttrDefinition::VerifierFn verifier = getAttrOrTypeVerifier( attrOp, dialects[attrOp.getParentOp()], types, attrs); if (!verifier) return WalkResult::interrupt(); attrs[attrOp]->setVerifyFn(std::move(verifier)); return WalkResult::advance(); }); if (res.wasInterrupted()) return failure(); // Define and load all operations. res = op.walk([&](OperationOp opOp) { return loadOperation(opOp, dialects[opOp.getParentOp()], types, attrs); }); if (res.wasInterrupted()) return failure(); // Load all types in their dialects. for (auto &pair : types) { ExtensibleDialect *dialect = dialects[pair.first.getParentOp()]; dialect->registerDynamicType(std::move(pair.second)); } // Load all attributes in their dialects. for (auto &pair : attrs) { ExtensibleDialect *dialect = dialects[pair.first.getParentOp()]; dialect->registerDynamicAttr(std::move(pair.second)); } return success(); }