// DEFINE: %{option} = "enable-runtime-library=false" // DEFINE: %{compile} = mlir-opt %s --sparse-compiler=%{option} // DEFINE: %{run} = mlir-cpu-runner \ // DEFINE: -e entry -entry-point-result=void \ // DEFINE: -shared-libs=%mlir_c_runner_utils | \ // DEFINE: FileCheck %s // // RUN: %{compile} | %{run} // // Do the same run, but now with direct IR generation and vectorization. // REDEFINE: %{option} = "enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true" // RUN: %{compile} | %{run} // Do the same run, but now with direct IR generation and, if available, VLA // vectorization. // REDEFINE: %{option} = "enable-runtime-library=false vl=4 enable-arm-sve=%ENABLE_VLA" // REDEFINE: %{run} = %lli_host_or_aarch64_cmd \ // REDEFINE: --entry-function=entry_lli \ // REDEFINE: --extra-module=%S/Inputs/main_for_lli.ll \ // REDEFINE: %VLA_ARCH_ATTR_OPTIONS \ // REDEFINE: --dlopen=%mlir_native_utils_lib_dir/libmlir_c_runner_utils%shlibext | \ // REDEFINE: FileCheck %s // RUN: %{compile} | mlir-translate -mlir-to-llvmir | %{run} #DCSR = #sparse_tensor.encoding<{ lvlTypes = [ "compressed", "compressed" ] }> #trait = { indexing_maps = [ affine_map<(i,j) -> (i,j)>, // A affine_map<(i,j) -> (i,j)>, // B affine_map<(i,j) -> (i,j)> // x (out) ], iterator_types = ["parallel", "parallel"], doc = "X(i, j) = cmp A(i,j) B(i, j)" } // // Integration test that lowers a kernel annotated as sparse to // actual sparse code, initializes a matching sparse storage scheme // from file, and runs the resulting code with the JIT compiler. // module { func.func @cmp_all_dense(%arga: tensor<4x4xf64>, %argb: tensor<4x4xf64>, %argx: tensor<4x4xi8>) -> tensor<4x4xi8> { %0 = linalg.generic #trait ins(%arga, %argb: tensor<4x4xf64>, tensor<4x4xf64>) outs(%argx: tensor<4x4xi8>) { ^bb(%a: f64, %b: f64, %x: i8): %0 = arith.cmpf ult, %a, %b : f64 %1 = arith.extui %0 : i1 to i8 linalg.yield %1 : i8 } -> tensor<4x4xi8> return %0 : tensor<4x4xi8> } func.func @cmp_lhs_sparse(%arga: tensor<4x4xf64, #DCSR>, %argb: tensor<4x4xf64>) -> tensor<4x4xi8, #DCSR> { %argx = bufferization.alloc_tensor() : tensor<4x4xi8, #DCSR> %0 = linalg.generic #trait ins(%arga, %argb: tensor<4x4xf64, #DCSR>, tensor<4x4xf64>) outs(%argx: tensor<4x4xi8, #DCSR>) { ^bb(%a: f64, %b: f64, %x: i8): %0 = arith.cmpf ult, %a, %b : f64 %1 = arith.extui %0 : i1 to i8 linalg.yield %1 : i8 } -> tensor<4x4xi8, #DCSR> return %0 : tensor<4x4xi8, #DCSR> } func.func @cmp_all_sparse(%arga: tensor<4x4xf64, #DCSR>, %argb: tensor<4x4xf64, #DCSR>) -> tensor<4x4xi8, #DCSR> { %argx = bufferization.alloc_tensor() : tensor<4x4xi8, #DCSR> %0 = linalg.generic #trait ins(%arga, %argb: tensor<4x4xf64, #DCSR>, tensor<4x4xf64, #DCSR>) outs(%argx: tensor<4x4xi8, #DCSR>) { ^bb(%a: f64, %b: f64, %x: i8): %0 = arith.cmpf ult, %a, %b : f64 %1 = arith.extui %0 : i1 to i8 linalg.yield %1 : i8 } -> tensor<4x4xi8, #DCSR> return %0 : tensor<4x4xi8, #DCSR> } // // Main driver that constructs matrix and calls the sparse kernel to perform // element-wise comparison. // func.func @entry() { %d0 = arith.constant 0 : i8 %c0 = arith.constant 0 : index %lhs_dn = arith.constant dense< [ [ 0.0, 0.0, 1.5, 1.0], [ 0.0, 3.5, 0.0, 0.0], [ 1.0, 5.0, 2.0, 0.0], [ 1.0, 0.5, 0.0, 0.0] ]> : tensor<4x4xf64> %rhs_dn = arith.constant dense< [ [ 0.0, 1.5, 1.0, 1.5], [ 3.5, 0.0, 0.0, 0.0], [ 5.0, 2.0, 0.0, 2.0], [ 0.5, 0.0, 0.0, 0.0] ]> : tensor<4x4xf64> %lhs_sp = sparse_tensor.convert %lhs_dn : tensor<4x4xf64> to tensor<4x4xf64, #DCSR> %rhs_sp = sparse_tensor.convert %rhs_dn : tensor<4x4xf64> to tensor<4x4xf64, #DCSR> %output = arith.constant dense<0> : tensor<4x4xi8> %all_dn_out = call @cmp_all_dense(%lhs_dn, %rhs_dn, %output) : (tensor<4x4xf64>, tensor<4x4xf64>, tensor<4x4xi8>) -> tensor<4x4xi8> %lhs_sp_out = call @cmp_lhs_sparse(%lhs_sp, %rhs_dn) : (tensor<4x4xf64, #DCSR>, tensor<4x4xf64>) -> tensor<4x4xi8, #DCSR> %all_sp_out = call @cmp_all_sparse(%lhs_sp, %rhs_sp) : (tensor<4x4xf64, #DCSR>, tensor<4x4xf64, #DCSR>) -> tensor<4x4xi8, #DCSR> // // All should have the same result. // // CHECK-COUNT-3: ( ( 0, 1, 0, 1 ), ( 1, 0, 0, 0 ), ( 1, 0, 0, 1 ), ( 0, 0, 0, 0 ) ) %v = vector.transfer_read %all_dn_out[%c0, %c0], %d0 : tensor<4x4xi8>, vector<4x4xi8> vector.print %v : vector<4x4xi8> %lhs_sp_ret = sparse_tensor.convert %lhs_sp_out : tensor<4x4xi8, #DCSR> to tensor<4x4xi8> %v1 = vector.transfer_read %lhs_sp_ret[%c0, %c0], %d0 : tensor<4x4xi8>, vector<4x4xi8> vector.print %v1 : vector<4x4xi8> %rhs_sp_ret = sparse_tensor.convert %all_sp_out : tensor<4x4xi8, #DCSR> to tensor<4x4xi8> %v2 = vector.transfer_read %rhs_sp_ret[%c0, %c0], %d0 : tensor<4x4xi8>, vector<4x4xi8> vector.print %v2 : vector<4x4xi8> bufferization.dealloc_tensor %lhs_sp : tensor<4x4xf64, #DCSR> bufferization.dealloc_tensor %rhs_sp : tensor<4x4xf64, #DCSR> bufferization.dealloc_tensor %lhs_sp_out : tensor<4x4xi8, #DCSR> bufferization.dealloc_tensor %all_sp_out : tensor<4x4xi8, #DCSR> return } }