// DEFINE: %{option} = enable-runtime-library=true // DEFINE: %{compile} = mlir-opt %s --sparse-compiler=%{option} // DEFINE: %{run} = TENSOR0="%mlir_src_dir/test/Integration/data/test.tns" \ // DEFINE: mlir-cpu-runner \ // DEFINE: -e entry -entry-point-result=void \ // DEFINE: -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils | \ // DEFINE: FileCheck %s // // RUN: %{compile} | %{run} // // Do the same run, but now with direct IR generation. // REDEFINE: %{option} = enable-runtime-library=false // RUN: %{compile} | %{run} // // Do the same run, but now with direct IR generation and vectorization. // REDEFINE: %{option} = "enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true" // RUN: %{compile} | %{run} // Do the same run, but now with direct IR generation and, if available, VLA // vectorization. // REDEFINE: %{option} = "enable-runtime-library=false vl=4 enable-arm-sve=%ENABLE_VLA" // REDEFINE: %{run} = TENSOR0="%mlir_src_dir/test/Integration/data/test.tns" \ // REDEFINE: %lli_host_or_aarch64_cmd \ // REDEFINE: --entry-function=entry_lli \ // REDEFINE: --extra-module=%S/Inputs/main_for_lli.ll \ // REDEFINE: %VLA_ARCH_ATTR_OPTIONS \ // REDEFINE: --dlopen=%mlir_native_utils_lib_dir/libmlir_c_runner_utils%shlibext --dlopen=%mlir_runner_utils | \ // REDEFINE: FileCheck %s // RUN: %{compile} | mlir-translate -mlir-to-llvmir | %{run} !Filename = !llvm.ptr #SparseTensor = #sparse_tensor.encoding<{ lvlTypes = [ "compressed", "compressed", "compressed", "compressed", "compressed", "compressed", "compressed", "compressed" ], // Note that any dimToLvl permutation should give the same results // since, even though it impacts the sparse storage scheme layout, // it should not change the semantics. dimToLvl = affine_map<(i,j,k,l,m,n,o,p) -> (p,o,j,k,i,l,m,n)> }> #trait_flatten = { indexing_maps = [ affine_map<(i,j,k,l,m,n,o,p) -> (i,j,k,l,m,n,o,p)>, // A affine_map<(i,j,k,l,m,n,o,p) -> (i,j)> // X (out) ], iterator_types = [ "parallel", "parallel", "reduction", "reduction", "reduction", "reduction", "reduction", "reduction" ], doc = "X(i,j) += A(i,j,k,l,m,n,o,p)" } // // Integration test that lowers a kernel annotated as sparse to // actual sparse code, initializes a matching sparse storage scheme // from file, and runs the resulting code with the JIT compiler. // module { // // A kernel that flattens a rank 8 tensor into a dense matrix. // func.func @kernel_flatten(%arga: tensor<7x3x3x3x3x3x5x3xf64, #SparseTensor>, %argx: tensor<7x3xf64>) -> tensor<7x3xf64> { %0 = linalg.generic #trait_flatten ins(%arga: tensor<7x3x3x3x3x3x5x3xf64, #SparseTensor>) outs(%argx: tensor<7x3xf64>) { ^bb(%a: f64, %x: f64): %0 = arith.addf %x, %a : f64 linalg.yield %0 : f64 } -> tensor<7x3xf64> return %0 : tensor<7x3xf64> } func.func private @getTensorFilename(index) -> (!Filename) func.func private @printMemrefF64(%ptr : tensor<*xf64>) // // Main driver that reads tensor from file and calls the sparse kernel. // func.func @entry() { %d0 = arith.constant 0.0 : f64 %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %c3 = arith.constant 3 : index %c7 = arith.constant 7 : index // Setup matrix memory that is initialized to zero. %x = arith.constant dense<0.000000e+00> : tensor<7x3xf64> // Read the sparse tensor from file, construct sparse storage. %fileName = call @getTensorFilename(%c0) : (index) -> (!Filename) %a = sparse_tensor.new %fileName : !Filename to tensor<7x3x3x3x3x3x5x3xf64, #SparseTensor> // Call the kernel. %0 = call @kernel_flatten(%a, %x) : (tensor<7x3x3x3x3x3x5x3xf64, #SparseTensor>, tensor<7x3xf64>) -> tensor<7x3xf64> // Print the result for verification. // // CHECK: {{\[}}[6.25, 0, 0], // CHECK-NEXT: [4.224, 6.21, 0], // CHECK-NEXT: [0, 0, 15.455], // CHECK-NEXT: [0, 0, 0], // CHECK-NEXT: [0, 0, 0], // CHECK-NEXT: [0, 0, 0], // CHECK-NEXT: [7, 0, 0]] // %1 = tensor.cast %0 : tensor<7x3xf64> to tensor<*xf64> call @printMemrefF64(%1) : (tensor<*xf64>) -> () // Release the resources. bufferization.dealloc_tensor %a : tensor<7x3x3x3x3x3x5x3xf64, #SparseTensor> return } }