//===- Barvinok.cpp - Barvinok's Algorithm ----------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "mlir/Analysis/Presburger/Barvinok.h" #include "mlir/Analysis/Presburger/Utils.h" #include "llvm/ADT/Sequence.h" #include #include using namespace mlir; using namespace presburger; using namespace mlir::presburger::detail; /// Assuming that the input cone is pointed at the origin, /// converts it to its dual in V-representation. /// Essentially we just remove the all-zeroes constant column. ConeV mlir::presburger::detail::getDual(ConeH cone) { unsigned numIneq = cone.getNumInequalities(); unsigned numVar = cone.getNumCols() - 1; ConeV dual(numIneq, numVar, 0, 0); // Assuming that an inequality of the form // a1*x1 + ... + an*xn + b ≥ 0 // is represented as a row [a1, ..., an, b] // and that b = 0. for (auto i : llvm::seq(0, numIneq)) { assert(cone.atIneq(i, numVar) == 0 && "H-representation of cone is not centred at the origin!"); for (unsigned j = 0; j < numVar; ++j) { dual.at(i, j) = cone.atIneq(i, j); } } // Now dual is of the form [ [a1, ..., an] , ... ] // which is the V-representation of the dual. return dual; } /// Converts a cone in V-representation to the H-representation /// of its dual, pointed at the origin (not at the original vertex). /// Essentially adds a column consisting only of zeroes to the end. ConeH mlir::presburger::detail::getDual(ConeV cone) { unsigned rows = cone.getNumRows(); unsigned columns = cone.getNumColumns(); ConeH dual = defineHRep(columns); // Add a new column (for constants) at the end. // This will be initialized to zero. cone.insertColumn(columns); for (unsigned i = 0; i < rows; ++i) dual.addInequality(cone.getRow(i)); // Now dual is of the form [ [a1, ..., an, 0] , ... ] // which is the H-representation of the dual. return dual; } /// Find the index of a cone in V-representation. MPInt mlir::presburger::detail::getIndex(const ConeV &cone) { if (cone.getNumRows() > cone.getNumColumns()) return MPInt(0); return cone.determinant(); } /// Compute the generating function for a unimodular cone. /// This consists of a single term of the form /// sign * x^num / prod_j (1 - x^den_j) /// /// sign is either +1 or -1. /// den_j is defined as the set of generators of the cone. /// num is computed by expressing the vertex as a weighted /// sum of the generators, and then taking the floor of the /// coefficients. GeneratingFunction mlir::presburger::detail::computeUnimodularConeGeneratingFunction( ParamPoint vertex, int sign, const ConeH &cone) { // Consider a cone with H-representation [0 -1]. // [-1 -2] // Let the vertex be given by the matrix [ 2 2 0], with 2 params. // [-1 -1/2 1] // `cone` must be unimodular. assert(abs(getIndex(getDual(cone))) == 1 && "input cone is not unimodular!"); unsigned numVar = cone.getNumVars(); unsigned numIneq = cone.getNumInequalities(); // Thus its ray matrix, U, is the inverse of the // transpose of its inequality matrix, `cone`. // The last column of the inequality matrix is null, // so we remove it to obtain a square matrix. FracMatrix transp = FracMatrix(cone.getInequalities()).transpose(); transp.removeRow(numVar); FracMatrix generators(numVar, numIneq); transp.determinant(/*inverse=*/&generators); // This is the U-matrix. // Thus the generators are given by U = [2 -1]. // [-1 0] // The powers in the denominator of the generating // function are given by the generators of the cone, // i.e., the rows of the matrix U. std::vector denominator(numIneq); ArrayRef row; for (auto i : llvm::seq(0, numVar)) { row = generators.getRow(i); denominator[i] = Point(row); } // The vertex is v \in Z^{d x (n+1)} // We need to find affine functions of parameters λ_i(p) // such that v = Σ λ_i(p)*u_i, // where u_i are the rows of U (generators) // The λ_i are given by the columns of Λ = v^T U^{-1}, and // we have transp = U^{-1}. // Then the exponent in the numerator will be // Σ -floor(-λ_i(p))*u_i. // Thus we store the (exponent of the) numerator as the affine function -Λ, // since the generators u_i are already stored as the exponent of the // denominator. Note that the outer -1 will have to be accounted for, as it is // not stored. See end for an example. unsigned numColumns = vertex.getNumColumns(); unsigned numRows = vertex.getNumRows(); ParamPoint numerator(numColumns, numRows); SmallVector ithCol(numRows); for (auto i : llvm::seq(0, numColumns)) { for (auto j : llvm::seq(0, numRows)) ithCol[j] = vertex(j, i); numerator.setRow(i, transp.preMultiplyWithRow(ithCol)); numerator.negateRow(i); } // Therefore Λ will be given by [ 1 0 ] and the negation of this will be // [ 1/2 -1 ] // [ -1 -2 ] // stored as the numerator. // Algebraically, the numerator exponent is // [ -2 ⌊ - N - M/2 + 1 ⌋ + 1 ⌊ 0 + M + 2 ⌋ ] -> first COLUMN of U is [2, -1] // [ 1 ⌊ - N - M/2 + 1 ⌋ + 0 ⌊ 0 + M + 2 ⌋ ] -> second COLUMN of U is [-1, 0] return GeneratingFunction(numColumns - 1, SmallVector(1, sign), std::vector({numerator}), std::vector({denominator})); } /// We use Gaussian elimination to find the solution to a set of d equations /// of the form /// a_1 x_1 + ... + a_d x_d + b_1 m_1 + ... + b_p m_p + c = 0 /// where x_i are variables, /// m_i are parameters and /// a_i, b_i, c are rational coefficients. /// /// The solution expresses each x_i as an affine function of the m_i, and is /// therefore represented as a matrix of size d x (p+1). /// If there is no solution, we return null. std::optional mlir::presburger::detail::solveParametricEquations(FracMatrix equations) { // equations is a d x (d + p + 1) matrix. // Each row represents an equation. unsigned d = equations.getNumRows(); unsigned numCols = equations.getNumColumns(); // If the determinant is zero, there is no unique solution. // Thus we return null. if (FracMatrix(equations.getSubMatrix(/*fromRow=*/0, /*toRow=*/d - 1, /*fromColumn=*/0, /*toColumn=*/d - 1)) .determinant() == 0) return std::nullopt; // Perform row operations to make each column all zeros except for the // diagonal element, which is made to be one. for (unsigned i = 0; i < d; ++i) { // First ensure that the diagonal element is nonzero, by swapping // it with a row that is non-zero at column i. if (equations(i, i) != 0) continue; for (unsigned j = i + 1; j < d; ++j) { if (equations(j, i) == 0) continue; equations.swapRows(j, i); break; } Fraction diagElement = equations(i, i); // Apply row operations to make all elements except the diagonal to zero. for (unsigned j = 0; j < d; ++j) { if (i == j) continue; if (equations(j, i) == 0) continue; // Apply row operations to make element (j, i) zero by subtracting the // ith row, appropriately scaled. Fraction currentElement = equations(j, i); equations.addToRow(/*sourceRow=*/i, /*targetRow=*/j, /*scale=*/-currentElement / diagElement); } } // Rescale diagonal elements to 1. for (unsigned i = 0; i < d; ++i) equations.scaleRow(i, 1 / equations(i, i)); // Now we have reduced the equations to the form // x_i + b_1' m_1 + ... + b_p' m_p + c' = 0 // i.e. each variable appears exactly once in the system, and has coefficient // one. // // Thus we have // x_i = - b_1' m_1 - ... - b_p' m_p - c // and so we return the negation of the last p + 1 columns of the matrix. // // We copy these columns and return them. ParamPoint vertex = equations.getSubMatrix(/*fromRow=*/0, /*toRow=*/d - 1, /*fromColumn=*/d, /*toColumn=*/numCols - 1); vertex.negateMatrix(); return vertex; } /// This is an implementation of the Clauss-Loechner algorithm for chamber /// decomposition. /// /// We maintain a list of pairwise disjoint chambers and the generating /// functions corresponding to each one. We iterate over the list of regions, /// each time adding the current region's generating function to the chambers /// where it is active and separating the chambers where it is not. /// /// Given the region each generating function is active in, for each subset of /// generating functions the region that (the sum of) precisely this subset is /// in, is the intersection of the regions that these are active in, /// intersected with the complements of the remaining regions. std::vector> mlir::presburger::detail::computeChamberDecomposition( unsigned numSymbols, ArrayRef> regionsAndGeneratingFunctions) { assert(!regionsAndGeneratingFunctions.empty() && "there must be at least one chamber!"); // We maintain a list of regions and their associated generating function // initialized with the universe and the empty generating function. std::vector> chambers = { {PresburgerSet::getUniverse(PresburgerSpace::getSetSpace(numSymbols)), GeneratingFunction(numSymbols, {}, {}, {})}}; // We iterate over the region list. // // For each activity region R_j (corresponding to the generating function // gf_j), we examine all the current chambers R_i. // // If R_j has a full-dimensional intersection with an existing chamber R_i, // then that chamber is replaced by two new ones: // 1. the intersection R_i \cap R_j, where the generating function is // gf_i + gf_j. // 2. the difference R_i - R_j, where the generating function is gf_i. // // At each step, we define a new chamber list after considering gf_j, // replacing and appending chambers as discussed above. // // The loop has the invariant that the union over all the chambers gives the // universe at every step. for (const auto &[region, generatingFunction] : regionsAndGeneratingFunctions) { std::vector> newChambers; for (const auto &[currentRegion, currentGeneratingFunction] : chambers) { PresburgerSet intersection = currentRegion.intersect(region); // If the intersection is not full-dimensional, we do not modify // the chamber list. if (!intersection.isFullDim()) { newChambers.emplace_back(currentRegion, currentGeneratingFunction); continue; } // If it is, we add the intersection and the difference as chambers. newChambers.emplace_back(intersection, currentGeneratingFunction + generatingFunction); newChambers.emplace_back(currentRegion.subtract(region), currentGeneratingFunction); } chambers = std::move(newChambers); } return chambers; } /// For a polytope expressed as a set of n inequalities, compute the generating /// function corresponding to the lattice points included in the polytope. This /// algorithm has three main steps: /// 1. Enumerate the vertices, by iterating over subsets of inequalities and /// checking for satisfiability. For each d-subset of inequalities (where d /// is the number of variables), we solve to obtain the vertex in terms of /// the parameters, and then check for the region in parameter space where /// this vertex satisfies the remaining (n - d) inequalities. /// 2. For each vertex, identify the tangent cone and compute the generating /// function corresponding to it. The generating function depends on the /// parametric expression of the vertex and the (non-parametric) generators /// of the tangent cone. /// 3. [Clauss-Loechner decomposition] Identify the regions in parameter space /// (chambers) where each vertex is active, and accordingly compute the /// GF of the polytope in each chamber. /// /// Verdoolaege, Sven, et al. "Counting integer points in parametric /// polytopes using Barvinok's rational functions." Algorithmica 48 (2007): /// 37-66. std::vector> mlir::presburger::detail::computePolytopeGeneratingFunction( const PolyhedronH &poly) { unsigned numVars = poly.getNumRangeVars(); unsigned numSymbols = poly.getNumSymbolVars(); unsigned numIneqs = poly.getNumInequalities(); // We store a list of the computed vertices. std::vector vertices; // For each vertex, we store the corresponding active region and the // generating functions of the tangent cone, in order. std::vector> regionsAndGeneratingFunctions; // We iterate over all subsets of inequalities with cardinality numVars, // using permutations of numVars 1's and (numIneqs - numVars) 0's. // // For a given permutation, we consider a subset which contains // the i'th inequality if the i'th bit in the bitset is 1. // // We start with the permutation that takes the last numVars inequalities. SmallVector indicator(numIneqs); for (unsigned i = numIneqs - numVars; i < numIneqs; ++i) indicator[i] = 1; do { // Collect the inequalities corresponding to the bits which are set // and the remaining ones. auto [subset, remainder] = poly.getInequalities().splitByBitset(indicator); // All other inequalities are stored in a2 and b2c2. // // These are column-wise splits of the inequalities; // a2 stores the coefficients of the variables, and // b2c2 stores the coefficients of the parameters and the constant term. FracMatrix a2(numIneqs - numVars, numVars); FracMatrix b2c2(numIneqs - numVars, numSymbols + 1); a2 = FracMatrix( remainder.getSubMatrix(0, numIneqs - numVars - 1, 0, numVars - 1)); b2c2 = FracMatrix(remainder.getSubMatrix(0, numIneqs - numVars - 1, numVars, numVars + numSymbols)); // Find the vertex, if any, corresponding to the current subset of // inequalities. std::optional vertex = solveParametricEquations(FracMatrix(subset)); // d x (p+1) if (!vertex) continue; if (std::find(vertices.begin(), vertices.end(), vertex) != vertices.end()) continue; // If this subset corresponds to a vertex that has not been considered, // store it. vertices.push_back(*vertex); // If a vertex is formed by the intersection of more than d facets, we // assume that any d-subset of these facets can be solved to obtain its // expression. This assumption is valid because, if the vertex has two // distinct parametric expressions, then a nontrivial equality among the // parameters holds, which is a contradiction as we know the parameter // space to be full-dimensional. // Let the current vertex be [X | y], where // X represents the coefficients of the parameters and // y represents the constant term. // // The region (in parameter space) where this vertex is active is given // by substituting the vertex into the *remaining* inequalities of the // polytope (those which were not collected into `subset`), i.e., into the // inequalities [A2 | B2 | c2]. // // Thus, the coefficients of the parameters after substitution become // (A2 • X + B2) // and the constant terms become // (A2 • y + c2). // // The region is therefore given by // (A2 • X + B2) p + (A2 • y + c2) ≥ 0 // // This is equivalent to A2 • [X | y] + [B2 | c2]. // // Thus we premultiply [X | y] with each row of A2 // and add each row of [B2 | c2]. FracMatrix activeRegion(numIneqs - numVars, numSymbols + 1); for (unsigned i = 0; i < numIneqs - numVars; i++) { activeRegion.setRow(i, vertex->preMultiplyWithRow(a2.getRow(i))); activeRegion.addToRow(i, b2c2.getRow(i), 1); } // We convert the representation of the active region to an integers-only // form so as to store it as a PresburgerSet. IntegerPolyhedron activeRegionRel( PresburgerSpace::getRelationSpace(0, numSymbols, 0, 0), activeRegion); // Now, we compute the generating function at this vertex. // We collect the inequalities corresponding to each vertex to compute // the tangent cone at that vertex. // // We only need the coefficients of the variables (NOT the parameters) // as the generating function only depends on these. // We translate the cones to be pointed at the origin by making the // constant terms zero. ConeH tangentCone = defineHRep(numVars); for (unsigned j = 0, e = subset.getNumRows(); j < e; ++j) { SmallVector ineq(numVars + 1); for (unsigned k = 0; k < numVars; ++k) ineq[k] = subset(j, k); tangentCone.addInequality(ineq); } // We assume that the tangent cone is unimodular, so there is no need // to decompose it. // // In the general case, the unimodular decomposition may have several // cones. GeneratingFunction vertexGf(numSymbols, {}, {}, {}); SmallVector, 4> unimodCones = {{1, tangentCone}}; for (const std::pair &signedCone : unimodCones) { auto [sign, cone] = signedCone; vertexGf = vertexGf + computeUnimodularConeGeneratingFunction(*vertex, sign, cone); } // We store the vertex we computed with the generating function of its // tangent cone. regionsAndGeneratingFunctions.emplace_back(PresburgerSet(activeRegionRel), vertexGf); } while (std::next_permutation(indicator.begin(), indicator.end())); // Now, we use Clauss-Loechner decomposition to identify regions in parameter // space where each vertex is active. These regions (chambers) have the // property that no two of them have a full-dimensional intersection, i.e., // they may share "facets" or "edges", but their intersection can only have // up to numVars - 1 dimensions. // // In each chamber, we sum up the generating functions of the active vertices // to find the generating function of the polytope. return computeChamberDecomposition(numSymbols, regionsAndGeneratingFunctions); } /// We use an iterative procedure to find a vector not orthogonal /// to a given set, ignoring the null vectors. /// Let the inputs be {x_1, ..., x_k}, all vectors of length n. /// /// In the following, /// vs[:i] means the elements of vs up to and including the i'th one, /// means the dot product of vs and us, /// vs ++ [v] means the vector vs with the new element v appended to it. /// /// We proceed iteratively; for steps d = 0, ... n-1, we construct a vector /// which is not orthogonal to any of {x_1[:d], ..., x_n[:d]}, ignoring /// the null vectors. /// At step d = 0, we let vs = [1]. Clearly this is not orthogonal to /// any vector in the set {x_1[0], ..., x_n[0]}, except the null ones, /// which we ignore. /// At step d > 0 , we need a number v /// s.t. != 0 for all i. /// => + x_i[d]*v != 0 /// => v != - / x_i[d] /// We compute this value for all x_i, and then /// set v to be the maximum element of this set plus one. Thus /// v is outside the set as desired, and we append it to vs /// to obtain the result of the d'th step. Point mlir::presburger::detail::getNonOrthogonalVector( ArrayRef vectors) { unsigned dim = vectors[0].size(); assert( llvm::all_of(vectors, [&](const Point &vector) { return vector.size() == dim; }) && "all vectors need to be the same size!"); SmallVector newPoint = {Fraction(1, 1)}; Fraction maxDisallowedValue = -Fraction(1, 0), disallowedValue = Fraction(0, 1); for (unsigned d = 1; d < dim; ++d) { // Compute the disallowed values - / x_i[d] for each i. maxDisallowedValue = -Fraction(1, 0); for (const Point &vector : vectors) { if (vector[d] == 0) continue; disallowedValue = -dotProduct(ArrayRef(vector).slice(0, d), newPoint) / vector[d]; // Find the biggest such value maxDisallowedValue = std::max(maxDisallowedValue, disallowedValue); } newPoint.push_back(maxDisallowedValue + 1); } return newPoint; } /// We use the following recursive formula to find the coefficient of /// s^power in the rational function given by P(s)/Q(s). /// /// Let P[i] denote the coefficient of s^i in the polynomial P(s). /// (P/Q)[r] = /// if (r == 0) then /// P[0]/Q[0] /// else /// (P[r] - {Σ_{i=1}^r (P/Q)[r-i] * Q[i])}/(Q[0]) /// We therefore recursively call `getCoefficientInRationalFunction` on /// all i \in [0, power). /// /// https://math.ucdavis.edu/~deloera/researchsummary/ /// barvinokalgorithm-latte1.pdf, p. 1285 QuasiPolynomial mlir::presburger::detail::getCoefficientInRationalFunction( unsigned power, ArrayRef num, ArrayRef den) { assert(!den.empty() && "division by empty denominator in rational function!"); unsigned numParam = num[0].getNumInputs(); // We use the `isEqual` method of PresburgerSpace, which QuasiPolynomial // inherits from. assert( llvm::all_of( num, [&](const QuasiPolynomial &qp) { return num[0].isEqual(qp); }) && "the quasipolynomials should all belong to the same space!"); std::vector coefficients; coefficients.reserve(power + 1); coefficients.push_back(num[0] / den[0]); for (unsigned i = 1; i <= power; ++i) { // If the power is not there in the numerator, the coefficient is zero. coefficients.push_back(i < num.size() ? num[i] : QuasiPolynomial(numParam, 0)); // After den.size(), the coefficients are zero, so we stop // subtracting at that point (if it is less than i). unsigned limit = std::min(i, den.size() - 1); for (unsigned j = 1; j <= limit; ++j) coefficients[i] = coefficients[i] - coefficients[i - j] * QuasiPolynomial(numParam, den[j]); coefficients[i] = coefficients[i] / den[0]; } return coefficients[power].simplify(); } /// Substitute x_i = t^μ_i in one term of a generating function, returning /// a quasipolynomial which represents the exponent of the numerator /// of the result, and a vector which represents the exponents of the /// denominator of the result. /// If the returned value is {num, dens}, it represents the function /// t^num / \prod_j (1 - t^dens[j]). /// v represents the affine functions whose floors are multiplied by the /// generators, and ds represents the list of generators. std::pair> substituteMuInTerm(unsigned numParams, const ParamPoint &v, const std::vector &ds, const Point &mu) { unsigned numDims = mu.size(); #ifndef NDEBUG for (const Point &d : ds) assert(d.size() == numDims && "μ has to have the same number of dimensions as the generators!"); #endif // First, the exponent in the numerator becomes // - (μ • u_1) * (floor(first col of v)) // - (μ • u_2) * (floor(second col of v)) - ... // - (μ • u_d) * (floor(d'th col of v)) // So we store the negation of the dot products. // We have d terms, each of whose coefficient is the negative dot product. SmallVector coefficients; coefficients.reserve(numDims); for (const Point &d : ds) coefficients.push_back(-dotProduct(mu, d)); // Then, the affine function is a single floor expression, given by the // corresponding column of v. ParamPoint vTranspose = v.transpose(); std::vector>> affine; affine.reserve(numDims); for (unsigned j = 0; j < numDims; ++j) affine.push_back({SmallVector(vTranspose.getRow(j))}); QuasiPolynomial num(numParams, coefficients, affine); num = num.simplify(); std::vector dens; dens.reserve(ds.size()); // Similarly, each term in the denominator has exponent // given by the dot product of μ with u_i. for (const Point &d : ds) { // This term in the denominator is // (1 - t^dens.back()) dens.push_back(dotProduct(d, mu)); } return {num, dens}; } /// Normalize all denominator exponents `dens` to their absolute values /// by multiplying and dividing by the inverses, in a function of the form /// sign * t^num / prod_j (1 - t^dens[j]). /// Here, sign = ± 1, /// num is a QuasiPolynomial, and /// each dens[j] is a Fraction. void normalizeDenominatorExponents(int &sign, QuasiPolynomial &num, std::vector &dens) { // We track the number of exponents that are negative in the // denominator, and convert them to their absolute values. unsigned numNegExps = 0; Fraction sumNegExps(0, 1); for (const auto &den : dens) { if (den < 0) { numNegExps += 1; sumNegExps += den; } } // If we have (1 - t^-c) in the denominator, for positive c, // multiply and divide by t^c. // We convert all negative-exponent terms at once; therefore // we multiply and divide by t^sumNegExps. // Then we get // -(1 - t^c) in the denominator, // increase the numerator by c, and // flip the sign of the function. if (numNegExps % 2 == 1) sign = -sign; num = num - QuasiPolynomial(num.getNumInputs(), sumNegExps); } /// Compute the binomial coefficients nCi for 0 ≤ i ≤ r, /// where n is a QuasiPolynomial. std::vector getBinomialCoefficients(const QuasiPolynomial &n, unsigned r) { unsigned numParams = n.getNumInputs(); std::vector coefficients; coefficients.reserve(r + 1); coefficients.emplace_back(numParams, 1); for (unsigned j = 1; j <= r; ++j) // We use the recursive formula for binomial coefficients here and below. coefficients.push_back( (coefficients[j - 1] * (n - QuasiPolynomial(numParams, j - 1)) / Fraction(j, 1)) .simplify()); return coefficients; } /// Compute the binomial coefficients nCi for 0 ≤ i ≤ r, /// where n is a QuasiPolynomial. std::vector getBinomialCoefficients(const Fraction &n, const Fraction &r) { std::vector coefficients; coefficients.reserve((int64_t)floor(r)); coefficients.emplace_back(1); for (unsigned j = 1; j <= r; ++j) coefficients.push_back(coefficients[j - 1] * (n - (j - 1)) / (j)); return coefficients; } /// We have a generating function of the form /// f_p(x) = \sum_i sign_i * (x^n_i(p)) / (\prod_j (1 - x^d_{ij}) /// /// where sign_i is ±1, /// n_i \in Q^p -> Q^d is the sum of the vectors d_{ij}, weighted by the /// floors of d affine functions on p parameters. /// d_{ij} \in Q^d are vectors. /// /// We need to find the number of terms of the form x^t in the expansion of /// this function. /// However, direct substitution (x = (1, ..., 1)) causes the denominator /// to become zero. /// /// We therefore use the following procedure instead: /// 1. Substitute x_i = (s+1)^μ_i for some vector μ. This makes the generating /// function a function of a scalar s. /// 2. Write each term in this function as P(s)/Q(s), where P and Q are /// polynomials. P has coefficients as quasipolynomials in d parameters, while /// Q has coefficients as scalars. /// 3. Find the constant term in the expansion of each term P(s)/Q(s). This is /// equivalent to substituting s = 0. /// /// Verdoolaege, Sven, et al. "Counting integer points in parametric /// polytopes using Barvinok's rational functions." Algorithmica 48 (2007): /// 37-66. QuasiPolynomial mlir::presburger::detail::computeNumTerms(const GeneratingFunction &gf) { // Step (1) We need to find a μ such that we can substitute x_i = // (s+1)^μ_i. After this substitution, the exponent of (s+1) in the // denominator is (μ_i • d_{ij}) in each term. Clearly, this cannot become // zero. Hence we find a vector μ that is not orthogonal to any of the // d_{ij} and substitute x accordingly. std::vector allDenominators; for (ArrayRef den : gf.getDenominators()) allDenominators.insert(allDenominators.end(), den.begin(), den.end()); Point mu = getNonOrthogonalVector(allDenominators); unsigned numParams = gf.getNumParams(); const std::vector> &ds = gf.getDenominators(); QuasiPolynomial totalTerm(numParams, 0); for (unsigned i = 0, e = ds.size(); i < e; ++i) { int sign = gf.getSigns()[i]; // Compute the new exponents of (s+1) for the numerator and the // denominator after substituting μ. auto [numExp, dens] = substituteMuInTerm(numParams, gf.getNumerators()[i], ds[i], mu); // Now the numerator is (s+1)^numExp // and the denominator is \prod_j (1 - (s+1)^dens[j]). // Step (2) We need to express the terms in the function as quotients of // polynomials. Each term is now of the form // sign_i * (s+1)^numExp / (\prod_j (1 - (s+1)^dens[j])) // For the i'th term, we first normalize the denominator to have only // positive exponents. We convert all the dens[j] to their // absolute values and change the sign and exponent in the numerator. normalizeDenominatorExponents(sign, numExp, dens); // Then, using the formula for geometric series, we replace each (1 - // (s+1)^(dens[j])) with // (-s)(\sum_{0 ≤ k < dens[j]} (s+1)^k). for (auto &j : dens) j = abs(j) - 1; // Note that at this point, the semantics of `dens[j]` changes to mean // a term (\sum_{0 ≤ k ≤ dens[j]} (s+1)^k). The denominator is, as before, // a product of these terms. // Since the -s are taken out, the sign changes if there is an odd number // of such terms. unsigned r = dens.size(); if (dens.size() % 2 == 1) sign = -sign; // Thus the term overall now has the form // sign'_i * (s+1)^numExp / // (s^r * \prod_j (\sum_{0 ≤ k < dens[j]} (s+1)^k)). // This means that // the numerator is a polynomial in s, with coefficients as // quasipolynomials (given by binomial coefficients), and the denominator // is a polynomial in s, with integral coefficients (given by taking the // convolution over all j). // Step (3) We need to find the constant term in the expansion of each // term. Since each term has s^r as a factor in the denominator, we avoid // substituting s = 0 directly; instead, we find the coefficient of s^r in // sign'_i * (s+1)^numExp / (\prod_j (\sum_k (s+1)^k)), // Letting P(s) = (s+1)^numExp and Q(s) = \prod_j (...), // we need to find the coefficient of s^r in P(s)/Q(s), // for which we use the `getCoefficientInRationalFunction()` function. // First, we compute the coefficients of P(s), which are binomial // coefficients. // We only need the first r+1 of these, as higher-order terms do not // contribute to the coefficient of s^r. std::vector numeratorCoefficients = getBinomialCoefficients(numExp, r); // Then we compute the coefficients of each individual term in Q(s), // which are (dens[i]+1) C (k+1) for 0 ≤ k ≤ dens[i]. std::vector> eachTermDenCoefficients; std::vector singleTermDenCoefficients; eachTermDenCoefficients.reserve(r); for (const Fraction &den : dens) { singleTermDenCoefficients = getBinomialCoefficients(den + 1, den + 1); eachTermDenCoefficients.push_back( ArrayRef(singleTermDenCoefficients).slice(1)); } // Now we find the coefficients in Q(s) itself // by taking the convolution of the coefficients // of all the terms. std::vector denominatorCoefficients; denominatorCoefficients = eachTermDenCoefficients[0]; for (unsigned j = 1, e = eachTermDenCoefficients.size(); j < e; ++j) denominatorCoefficients = multiplyPolynomials(denominatorCoefficients, eachTermDenCoefficients[j]); totalTerm = totalTerm + getCoefficientInRationalFunction(r, numeratorCoefficients, denominatorCoefficients) * QuasiPolynomial(numParams, sign); } return totalTerm.simplify(); }