// RUN: mlir-opt %s --sparse-tensor-codegen --canonicalize --cse | FileCheck %s #SparseVector64 = #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed), posWidth = 64, crdWidth = 64 }> #SparseVector32 = #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed), posWidth = 32, crdWidth = 32 }> // CHECK-LABEL: func.func @sparse_convert( // CHECK-SAME: %[[VAL_0:.*0]]: memref, // CHECK-SAME: %[[VAL_1:.*1]]: memref, // CHECK-SAME: %[[VAL_2:.*2]]: memref, // CHECK-SAME: %[[VAL_3:.*3]]: !sparse_tensor.storage_specifier // CHECK: %[[VAL_4:.*]] = arith.constant 1 : index // CHECK: %[[VAL_5:.*]] = arith.constant 0 : index // CHECK: %[[VAL_6:.*]] = memref.dim %[[VAL_0]], %[[VAL_5]] : memref // CHECK: %[[VAL_7:.*]] = memref.alloc(%[[VAL_6]]) : memref // CHECK: scf.for %[[VAL_8:.*]] = %[[VAL_5]] to %[[VAL_6]] step %[[VAL_4]] { // CHECK: %[[VAL_9:.*]] = memref.load %[[VAL_0]]{{\[}}%[[VAL_8]]] : memref // CHECK: %[[VAL_10:.*]] = arith.trunci %[[VAL_9]] : i64 to i32 // CHECK: memref.store %[[VAL_10]], %[[VAL_7]]{{\[}}%[[VAL_8]]] : memref // CHECK: } // CHECK: %[[VAL_11:.*]] = memref.dim %[[VAL_1]], %[[VAL_5]] : memref // CHECK: %[[VAL_12:.*]] = memref.alloc(%[[VAL_11]]) : memref // CHECK: scf.for %[[VAL_13:.*]] = %[[VAL_5]] to %[[VAL_11]] step %[[VAL_4]] { // CHECK: %[[VAL_14:.*]] = memref.load %[[VAL_1]]{{\[}}%[[VAL_13]]] : memref // CHECK: %[[VAL_15:.*]] = arith.trunci %[[VAL_14]] : i64 to i32 // CHECK: memref.store %[[VAL_15]], %[[VAL_12]]{{\[}}%[[VAL_13]]] : memref // CHECK: } // CHECK: %[[VAL_16:.*]] = memref.dim %[[VAL_2]], %[[VAL_5]] : memref // CHECK: %[[VAL_17:.*]] = memref.alloc(%[[VAL_16]]) : memref // CHECK: memref.copy %[[VAL_2]], %[[VAL_17]] : memref to memref // CHECK: return %[[VAL_7]], %[[VAL_12]], %[[VAL_17]], %[[VAL_3]] : memref, memref, memref, !sparse_tensor.storage_specifier // CHECK: } func.func @sparse_convert(%arg0: tensor) -> tensor { %0 = sparse_tensor.convert %arg0 : tensor to tensor return %0 : tensor } // CHECK-LABEL: func.func @sparse_convert_value( // CHECK-SAME: %[[VAL_0:.*0]]: memref, // CHECK-SAME: %[[VAL_1:.*1]]: memref, // CHECK-SAME: %[[VAL_2:.*2]]: memref, // CHECK-SAME: %[[VAL_3:.*]]: !sparse_tensor.storage_specifier // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 0 : index // CHECK: %[[VAL_6:.*]] = memref.dim %[[VAL_0]], %[[VAL_5]] : memref // CHECK: %[[VAL_7:.*]] = memref.alloc(%[[VAL_6]]) : memref // CHECK: memref.copy %[[VAL_0]], %[[VAL_7]] : memref to memref // CHECK: %[[VAL_8:.*]] = memref.dim %[[VAL_1]], %[[VAL_5]] : memref // CHECK: %[[VAL_9:.*]] = memref.alloc(%[[VAL_8]]) : memref // CHECK: memref.copy %[[VAL_1]], %[[VAL_9]] : memref to memref // CHECK: %[[VAL_10:.*]] = memref.dim %[[VAL_2]], %[[VAL_5]] : memref // CHECK: %[[VAL_11:.*]] = memref.alloc(%[[VAL_10]]) : memref // CHECK: scf.for %[[VAL_12:.*]] = %[[VAL_5]] to %[[VAL_10]] step %[[VAL_4]] { // CHECK: %[[VAL_13:.*]] = memref.load %[[VAL_2]]{{\[}}%[[VAL_12]]] : memref // CHECK: %[[VAL_14:.*]] = arith.extf %[[VAL_13]] : f32 to f64 // CHECK: memref.store %[[VAL_14]], %[[VAL_11]]{{\[}}%[[VAL_12]]] : memref // CHECK: } // CHECK: return %[[VAL_7]], %[[VAL_9]], %[[VAL_11]], %[[VAL_3]] : memref, memref, memref, !sparse_tensor.storage_specifier // CHECK: } func.func @sparse_convert_value(%arg0: tensor) -> tensor { %0 = sparse_tensor.convert %arg0 : tensor to tensor return %0 : tensor }