// RUN: mlir-opt %s --lower-sparse-foreach-to-scf --canonicalize | FileCheck %s // CHECK-LABEL: func.func @sparse_foreach_constant // CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index // CHECK-DAG: %[[V1:.*]] = arith.constant 5.000000e+00 : f32 // CHECK-DAG: %[[C2:.*]] = arith.constant 2 : index // CHECK-DAG: %[[V3:.*]] = arith.constant 1.000000e+00 : f32 // CHECK-DAG: %[[V4:.*]] = arith.constant 6.000000e+00 : f32 // (1, 1) -> (2, 1) -> (2, 2) // CHECK-NEXT: "test.use"(%[[C1]], %[[C1]], %[[V1]]) // CHECK-NEXT: "test.use"(%[[C2]], %[[C1]], %[[V3]]) // CHECK-NEXT: "test.use"(%[[C1]], %[[C2]], %[[V4]]) // (1, 1) -> (1, 2) -> (2, 1) // CHECK-NEXT: "test.use"(%[[C1]], %[[C1]], %[[V1]]) // CHECK-NEXT: "test.use"(%[[C1]], %[[C2]], %[[V4]]) // CHECK-NEXT: "test.use"(%[[C2]], %[[C1]], %[[V3]]) func.func @sparse_foreach_constant() -> () { %cst = arith.constant sparse<[[2, 1], [1, 1], [1, 2]], [1.0, 5.0, 6.0]> : tensor<8x7xf32> // Make use the sparse constant are properly sorted based on the requested order. sparse_tensor.foreach in %cst { order = affine_map<(d0, d1) -> (d1, d0)> } : tensor<8x7xf32> do { ^bb0(%arg0: index, %arg1: index, %arg2: f32): "test.use" (%arg0, %arg1, %arg2): (index,index,f32)->() } sparse_tensor.foreach in %cst : tensor<8x7xf32> do { ^bb0(%arg0: index, %arg1: index, %arg2: f32): "test.use" (%arg0, %arg1, %arg2): (index,index,f32)->() } return } #CSR_SLICE = #sparse_tensor.encoding<{ map = (d0 : #sparse_tensor, d1 : #sparse_tensor) -> (d0 : compressed, d1 : compressed) }> #CSR_SLICE_DYN = #sparse_tensor.encoding<{ map = (d0 : #sparse_tensor, d1 : #sparse_tensor) -> (d0 : compressed, d1 : compressed) }> // TODO: re-enable after lowering coo.next to function call (such that loop structure is more clear). // C_HECK-LABEL: func.func @foreach_print_slice_dyn( // C_HECK-SAME: %[[VAL_0:.*]]: tensor // C_HECK: %[[VAL_15:.*]] = memref.load %[[VAL_3]]{{\[}}%[[VAL_2]]] : memref // C_HECK: scf.for %[[VAL_16:.*]] = %[[VAL_14]] to %[[VAL_15]] step %[[VAL_2]] { // C_HECK: %[[VAL_17:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_16]]] : memref // C_HECK: %[[VAL_18:.*]] = arith.subi %[[VAL_17]], %[[VAL_6]] : index // C_HECK: %[[VAL_19:.*]] = arith.remui %[[VAL_18]], %[[VAL_7]] : index // C_HECK: %[[VAL_20:.*]] = arith.divui %[[VAL_18]], %[[VAL_7]] : index // C_HECK: %[[VAL_21:.*]] = arith.cmpi uge, %[[VAL_17]], %[[VAL_6]] : index // C_HECK: %[[VAL_22:.*]] = arith.cmpi ult, %[[VAL_20]], %[[VAL_5]] : index // C_HECK: %[[VAL_23:.*]] = arith.cmpi eq, %[[VAL_19]], %[[VAL_1]] : index // C_HECK: %[[VAL_24:.*]] = arith.andi %[[VAL_21]], %[[VAL_22]] : i1 // C_HECK: %[[VAL_25:.*]] = arith.andi %[[VAL_24]], %[[VAL_23]] : i1 // C_HECK: scf.if %[[VAL_25]] { // C_HECK: %[[VAL_26:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_16]]] : memref // C_HECK: %[[VAL_27:.*]] = arith.addi %[[VAL_16]], %[[VAL_2]] : index // C_HECK: %[[VAL_28:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_27]]] : memref // C_HECK: scf.for %[[VAL_29:.*]] = %[[VAL_26]] to %[[VAL_28]] step %[[VAL_2]] { // C_HECK: %[[VAL_30:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_29]]] : memref // C_HECK: %[[VAL_31:.*]] = arith.subi %[[VAL_30]], %[[VAL_11]] : index // C_HECK: %[[VAL_32:.*]] = arith.remui %[[VAL_31]], %[[VAL_12]] : index // C_HECK: %[[VAL_33:.*]] = arith.divui %[[VAL_31]], %[[VAL_12]] : index // C_HECK: %[[VAL_34:.*]] = arith.cmpi uge, %[[VAL_30]], %[[VAL_11]] : index // C_HECK: %[[VAL_35:.*]] = arith.cmpi ult, %[[VAL_33]], %[[VAL_10]] : index // C_HECK: %[[VAL_36:.*]] = arith.cmpi eq, %[[VAL_32]], %[[VAL_1]] : index // C_HECK: %[[VAL_37:.*]] = arith.andi %[[VAL_34]], %[[VAL_35]] : i1 // C_HECK: %[[VAL_38:.*]] = arith.andi %[[VAL_37]], %[[VAL_36]] : i1 // C_HECK: scf.if %[[VAL_38]] { // C_HECK: %[[VAL_39:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_29]]] : memref // C_HECK: "test.use"(%[[VAL_39]]) : (f64) -> () // C_HECK: } // C_HECK: } // C_HECK: } // C_HECK: } // C_HECK: return // func.func @foreach_print_slice_dyn(%A: tensor) { sparse_tensor.foreach in %A : tensor do { ^bb0(%1: index, %2: index, %v: f64) : "test.use" (%v) : (f64) -> () } return } // C_HECK-LABEL: func.func @foreach_print_slice( // C_HECK-SAME: %[[VAL_0:.*]]: tensor<4x4xf64, // C_HECK-DAG: %[[VAL_1:.*]] = arith.constant 4 : index // C_HECK-DAG: %[[VAL_2:.*]] = arith.constant 2 : index // C_HECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index // C_HECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index // C_HECK-DAG: %[[VAL_5:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<4x4xf64, // C_HECK-DAG: %[[VAL_6:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<4x4xf64, // C_HECK-DAG: %[[VAL_7:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 1 : index} : tensor<4x4xf64, // C_HECK-DAG: %[[VAL_8:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 1 : index} : tensor<4x4xf64, // C_HECK-DAG: %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<4x4xf64, // C_HECK-DAG: %[[VAL_10:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref // C_HECK: %[[VAL_11:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_4]]] : memref // C_HECK: scf.for %[[VAL_12:.*]] = %[[VAL_10]] to %[[VAL_11]] step %[[VAL_4]] { // C_HECK: %[[VAL_13:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_12]]] : memref // C_HECK: %[[VAL_14:.*]] = arith.cmpi ult, %[[VAL_13]], %[[VAL_1]] : index // C_HECK: scf.if %[[VAL_14]] { // C_HECK: %[[VAL_15:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_12]]] : memref // C_HECK: %[[VAL_16:.*]] = arith.addi %[[VAL_12]], %[[VAL_4]] : index // C_HECK: %[[VAL_17:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_16]]] : memref // C_HECK: scf.for %[[VAL_18:.*]] = %[[VAL_15]] to %[[VAL_17]] step %[[VAL_4]] { // C_HECK: %[[VAL_19:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_18]]] : memref // C_HECK: %[[VAL_20:.*]] = arith.subi %[[VAL_19]], %[[VAL_2]] : index // C_HECK: %[[VAL_21:.*]] = arith.cmpi uge, %[[VAL_19]], %[[VAL_2]] : index // C_HECK: %[[VAL_22:.*]] = arith.cmpi ult, %[[VAL_20]], %[[VAL_1]] : index // C_HECK: %[[VAL_23:.*]] = arith.andi %[[VAL_21]], %[[VAL_22]] : i1 // C_HECK: scf.if %[[VAL_23]] { // C_HECK: %[[VAL_24:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_18]]] : memref // C_HECK: "test.use"(%[[VAL_24]]) : (f64) -> () // C_HECK: } // C_HECK: } // C_HECK: } // C_HECK: } // C_HECK: return // func.func @foreach_print_slice(%A: tensor<4x4xf64, #CSR_SLICE>) { sparse_tensor.foreach in %A : tensor<4x4xf64, #CSR_SLICE> do { ^bb0(%1: index, %2: index, %v: f64) : "test.use" (%v) : (f64) -> () } return } #BCOO = #sparse_tensor.encoding<{ map = (d0, d1, d2) -> (d0 : dense, d1 : loose_compressed(nonunique), d2 : singleton) }> // C_HECK-LABEL: func.func @foreach_bcoo( // C_HECK-SAME: %[[VAL_0:.*]]: tensor<4x4x4xf64, #sparse{{[0-9]*}}>) { // C_HECK-DAG: %[[VAL_1:.*]] = arith.constant 4 : index // C_HECK-DAG: %[[VAL_2:.*]] = arith.constant 0 : index // C_HECK-DAG: %[[VAL_3:.*]] = arith.constant 1 : index // C_HECK-DAG: %[[VAL_4:.*]] = arith.constant 2 : index // C_HECK-DAG: %[[VAL_5:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 1 : index} : tensor<4x4x4xf64, #sparse{{[0-9]*}}> to memref // C_HECK-DAG: %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<4x4x4xf64, #sparse{{[0-9]*}}> to memref // C_HECK: scf.for %[[VAL_7:.*]] = %[[VAL_2]] to %[[VAL_1]] step %[[VAL_3]] { // C_HECK: %[[VAL_8:.*]] = arith.muli %[[VAL_7]], %[[VAL_4]] : index // C_HECK: %[[VAL_9:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_8]]] : memref // C_HECK: %[[VAL_10:.*]] = arith.addi %[[VAL_8]], %[[VAL_3]] : index // C_HECK: %[[VAL_11:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_10]]] : memref // C_HECK: scf.for %[[VAL_12:.*]] = %[[VAL_9]] to %[[VAL_11]] step %[[VAL_3]] { // C_HECK: %[[VAL_13:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_12]]] : memref // C_HECK: "test.use"(%[[VAL_13]]) : (f64) -> () // C_HECK: } {"Emitted from" = "sparse_tensor.foreach"} // C_HECK: } {"Emitted from" = "sparse_tensor.foreach"} // C_HECK: return // C_HECK: } func.func @foreach_bcoo(%A: tensor<4x4x4xf64, #BCOO>) { sparse_tensor.foreach in %A : tensor<4x4x4xf64, #BCOO> do { ^bb0(%1: index, %2: index, %3: index, %v: f64) : "test.use" (%v) : (f64) -> () } return }