// RUN: mlir-opt %s --sparse-reinterpret-map -sparsification -cse -split-input-file | \ // RUN: FileCheck %s --check-prefix=CHECK-SCALAR // RUN: mlir-opt %s --sparse-reinterpret-map --sparse-reinterpret-map -sparsification -cse -sparse-vectorization="vl=16" -cse -split-input-file | \ // RUN: FileCheck %s --check-prefix=CHECK-VEC16 // RUN: mlir-opt %s --sparse-reinterpret-map -sparsification -cse -sparse-vectorization="vl=16 enable-simd-index32=true" -cse -split-input-file | \ // RUN: FileCheck %s --check-prefix=CHECK-VEC16-IDX32 // RUN: mlir-opt %s --sparse-reinterpret-map -sparsification -cse -sparse-vectorization="vl=4 enable-vla-vectorization=true" -cse -split-input-file | \ // RUN: FileCheck %s --check-prefix=CHECK-VEC4-SVE #DenseVector = #sparse_tensor.encoding<{ map = (d0) -> (d0 : dense) }> #trait_scale_d = { indexing_maps = [ affine_map<(i) -> (i)>, // a affine_map<(i) -> (i)> // x (out) ], iterator_types = ["parallel"], doc = "x(i) = a(i) * b" } // // CHECK-SCALAR-LABEL: func @scale_d // CHECK-SCALAR-DAG: %[[c0:.*]] = arith.constant 0 : index // CHECK-SCALAR-DAG: %[[c1:.*]] = arith.constant 1 : index // CHECK-SCALAR-DAG: %[[c1024:.*]] = arith.constant 1024 : index // CHECK-SCALAR: scf.for %[[i:.*]] = %[[c0]] to %[[c1024]] step %[[c1]] { // CHECK-SCALAR: %[[l:.*]] = memref.load %{{.*}}[%[[i]]] : memref // CHECK-SCALAR: %[[m:.*]] = arith.mulf %[[l]], %{{.*}} : f32 // CHECK-SCALAR: store %[[m]], %{{.*}}[%[[i]]] : memref<1024xf32> // CHECK-SCALAR: } // CHECK-SCALAR: return // // CHECK-VEC16-LABEL: func @scale_d // CHECK-VEC16-DAG: %[[c0:.*]] = arith.constant 0 : index // CHECK-VEC16-DAG: %[[c16:.*]] = arith.constant 16 : index // CHECK-VEC16-DAG: %[[c1024:.*]] = arith.constant 1024 : index // CHECK-VEC16: scf.for %[[i:.*]] = %[[c0]] to %[[c1024]] step %[[c16]] { // CHECK-VEC16: %[[r:.*]] = vector.load %{{.*}}[%[[i]]] : memref, vector<16xf32> // CHECK-VEC16: %[[b:.*]] = vector.broadcast %{{.*}} : f32 to vector<16xf32> // CHECK-VEC16: %[[m:.*]] = arith.mulf %[[r]], %[[b]] : vector<16xf32> // CHECK-VEC16: vector.store %[[m]], %{{.*}}[%[[i]]] : memref<1024xf32>, vector<16xf32> // CHECK-VEC16: } // CHECK-VEC16: return // // CHECK-VEC16-IDX32-LABEL: func @scale_d // CHECK-VEC16-IDX32-DAG: %[[c0:.*]] = arith.constant 0 : index // CHECK-VEC16-IDX32-DAG: %[[c16:.*]] = arith.constant 16 : index // CHECK-VEC16-IDX32-DAG: %[[c1024:.*]] = arith.constant 1024 : index // CHECK-VEC16-IDX32: scf.for %[[i:.*]] = %[[c0]] to %[[c1024]] step %[[c16]] { // CHECK-VEC16-IDX32: %[[r:.*]] = vector.load %{{.*}}[%[[i]]] : memref, vector<16xf32> // CHECK-VEC16-IDX32: %[[b:.*]] = vector.broadcast %{{.*}} : f32 to vector<16xf32> // CHECK-VEC16-IDX32: %[[m:.*]] = arith.mulf %[[r]], %[[b]] : vector<16xf32> // CHECK-VEC16-IDX32: vector.store %[[m]], %{{.*}}[%[[i]]] : memref<1024xf32>, vector<16xf32> // CHECK-VEC16-IDX32: } // CHECK-VEC16-IDX32: return // // CHECK-VEC4-SVE: #[[$map:.*]] = affine_map<(d0, d1)[s0] -> (s0, d0 - d1) // CHECK-VEC4-SVE-LABEL: func @scale_d // CHECK-VEC4-SVE-DAG: %[[c0:.*]] = arith.constant 0 : index // CHECK-VEC4-SVE-DAG: %[[c4:.*]] = arith.constant 4 : index // CHECK-VEC4-SVE-DAG: %[[c1024:.*]] = arith.constant 1024 : index // CHECK-VEC4-SVE-DAG: %[[v0:.*]] = arith.constant dense<0.000000e+00> : vector<[4]xf32> // CHECK-VEC4-SVE-DAG: %[[vscale:.*]] = vector.vscale // CHECK-VEC4-SVE: %[[step:.*]] = arith.muli %[[vscale]], %[[c4]] : index // CHECK-VEC4-SVE: scf.for %[[i:.*]] = %[[c0]] to %[[c1024]] step %[[step]] { // CHECK-VEC4-SVE: %[[sub:.*]] = affine.min #[[$map]](%[[c1024]], %[[i]])[%[[step]]] // CHECK-VEC4-SVE: %[[mask:.*]] = vector.create_mask %[[sub]] : vector<[4]xi1> // CHECK-VEC4-SVE: %[[val:.*]] = vector.maskedload %{{.*}}[%[[i]]], %[[mask]], %[[v0]] : memref, vector<[4]xi1>, vector<[4]xf32> into vector<[4]xf32> // CHECK-VEC4-SVE: %[[scalev:.*]] = vector.broadcast %{{.*}} : f32 to vector<[4]xf32> // CHECK-VEC4-SVE: %[[scaled:.*]] = arith.mulf %[[val]], %[[scalev]] : vector<[4]xf32> // CHECK-VEC4-SVE: vector.maskedstore %{{.*}}[%[[i]]], %[[mask]], %[[scaled]] : memref<1024xf32>, vector<[4]xi1>, vector<[4]xf32> // CHECK-VEC4-SVE: } // CHECK-VEC4-SVE: return // func.func @scale_d(%arga: tensor<1024xf32, #DenseVector>, %b: f32, %argx: tensor<1024xf32>) -> tensor<1024xf32> { %0 = linalg.generic #trait_scale_d ins(%arga: tensor<1024xf32, #DenseVector>) outs(%argx: tensor<1024xf32>) { ^bb(%a: f32, %x: f32): %0 = arith.mulf %a, %b : f32 linalg.yield %0 : f32 } -> tensor<1024xf32> return %0 : tensor<1024xf32> } // ----- #SparseVector = #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed), posWidth = 32, crdWidth = 32 }> #trait_mul_s = { indexing_maps = [ affine_map<(i) -> (i)>, // a affine_map<(i) -> (i)>, // b affine_map<(i) -> (i)> // x (out) ], iterator_types = ["parallel"], doc = "x(i) = a(i) * b(i)" } // // CHECK-SCALAR-LABEL: func @mul_s // CHECK-SCALAR-DAG: %[[c0:.*]] = arith.constant 0 : index // CHECK-SCALAR-DAG: %[[c1:.*]] = arith.constant 1 : index // CHECK-SCALAR: %[[p:.*]] = memref.load %{{.*}}[%[[c0]]] : memref // CHECK-SCALAR: %[[a:.*]] = arith.extui %[[p]] : i32 to i64 // CHECK-SCALAR: %[[q:.*]] = arith.index_cast %[[a]] : i64 to index // CHECK-SCALAR: %[[r:.*]] = memref.load %{{.*}}[%[[c1]]] : memref // CHECK-SCALAR: %[[b:.*]] = arith.extui %[[r]] : i32 to i64 // CHECK-SCALAR: %[[s:.*]] = arith.index_cast %[[b]] : i64 to index // CHECK-SCALAR: scf.for %[[i:.*]] = %[[q]] to %[[s]] step %[[c1]] { // CHECK-SCALAR: %[[li:.*]] = memref.load %{{.*}}[%[[i]]] : memref // CHECK-SCALAR: %[[zi:.*]] = arith.extui %[[li]] : i32 to i64 // CHECK-SCALAR: %[[ci:.*]] = arith.index_cast %[[zi]] : i64 to index // CHECK-SCALAR: %[[la:.*]] = memref.load %{{.*}}[%[[i]]] : memref // CHECK-SCALAR: %[[lb:.*]] = memref.load %{{.*}}[%[[ci]]] : memref<1024xf32> // CHECK-SCALAR: %[[m:.*]] = arith.mulf %[[la]], %[[lb]] : f32 // CHECK-SCALAR: store %[[m]], %{{.*}}[%[[ci]]] : memref<1024xf32> // CHECK-SCALAR: } // CHECK-SCALAR: return // // CHECK-VEC16: #[[$map:.*]] = affine_map<(d0, d1)[s0] -> (16, d0 - d1) // CHECK-VEC16-LABEL: func @mul_s // CHECK-VEC16-DAG: %[[c0:.*]] = arith.constant 0 : index // CHECK-VEC16-DAG: %[[c1:.*]] = arith.constant 1 : index // CHECK-VEC16-DAG: %[[c16:.*]] = arith.constant 16 : index // CHECK-VEC16: %[[p:.*]] = memref.load %{{.*}}[%[[c0]]] : memref // CHECK-VEC16: %[[a:.*]] = arith.extui %[[p]] : i32 to i64 // CHECK-VEC16: %[[q:.*]] = arith.index_cast %[[a]] : i64 to index // CHECK-VEC16: %[[r:.*]] = memref.load %{{.*}}[%[[c1]]] : memref // CHECK-VEC16: %[[b:.*]] = arith.extui %[[r]] : i32 to i64 // CHECK-VEC16: %[[s:.*]] = arith.index_cast %[[b]] : i64 to index // CHECK-VEC16: scf.for %[[i:.*]] = %[[q]] to %[[s]] step %[[c16]] { // CHECK-VEC16: %[[sub:.*]] = affine.min #[[$map]](%[[s]], %[[i]])[%[[c16]]] // CHECK-VEC16: %[[mask:.*]] = vector.create_mask %[[sub]] : vector<16xi1> // CHECK-VEC16: %[[li:.*]] = vector.maskedload %{{.*}}[%[[i]]], %[[mask]], %{{.*}} : memref, vector<16xi1>, vector<16xi32> into vector<16xi32> // CHECK-VEC16: %[[zi:.*]] = arith.extui %[[li]] : vector<16xi32> to vector<16xi64> // CHECK-VEC16: %[[la:.*]] = vector.maskedload %{{.*}}[%[[i]]], %[[mask]], %{{.*}} : memref, vector<16xi1>, vector<16xf32> into vector<16xf32> // CHECK-VEC16: %[[lb:.*]] = vector.gather %{{.*}}[%[[c0]]] [%[[zi]]], %[[mask]], %{{.*}} : memref<1024xf32>, vector<16xi64>, vector<16xi1>, vector<16xf32> into vector<16xf32> // CHECK-VEC16: %[[m:.*]] = arith.mulf %[[la]], %[[lb]] : vector<16xf32> // CHECK-VEC16: vector.scatter %{{.*}}[%[[c0]]] [%[[zi]]], %[[mask]], %[[m]] : memref<1024xf32>, vector<16xi64>, vector<16xi1>, vector<16xf32> // CHECK-VEC16: } // CHECK-VEC16: return // // CHECK-VEC16-IDX32: #[[$map:.*]] = affine_map<(d0, d1)[s0] -> (16, d0 - d1) // CHECK-VEC16-IDX32-LABEL: func @mul_s // CHECK-VEC16-IDX32-DAG: %[[c0:.*]] = arith.constant 0 : index // CHECK-VEC16-IDX32-DAG: %[[c1:.*]] = arith.constant 1 : index // CHECK-VEC16-IDX32-DAG: %[[c16:.*]] = arith.constant 16 : index // CHECK-VEC16-IDX32: %[[p:.*]] = memref.load %{{.*}}[%[[c0]]] : memref // CHECK-VEC16-IDX32: %[[a:.*]] = arith.extui %[[p]] : i32 to i64 // CHECK-VEC16-IDX32: %[[q:.*]] = arith.index_cast %[[a]] : i64 to index // CHECK-VEC16-IDX32: %[[r:.*]] = memref.load %{{.*}}[%[[c1]]] : memref // CHECK-VEC16-IDX32: %[[b:.*]] = arith.extui %[[r]] : i32 to i64 // CHECK-VEC16-IDX32: %[[s:.*]] = arith.index_cast %[[b]] : i64 to index // CHECK-VEC16-IDX32: scf.for %[[i:.*]] = %[[q]] to %[[s]] step %[[c16]] { // CHECK-VEC16-IDX32: %[[sub:.*]] = affine.min #[[$map]](%[[s]], %[[i]])[%[[c16]]] // CHECK-VEC16-IDX32: %[[mask:.*]] = vector.create_mask %[[sub]] : vector<16xi1> // CHECK-VEC16-IDX32: %[[li:.*]] = vector.maskedload %{{.*}}[%[[i]]], %[[mask]], %{{.*}} : memref, vector<16xi1>, vector<16xi32> into vector<16xi32> // CHECK-VEC16-IDX32: %[[la:.*]] = vector.maskedload %{{.*}}[%[[i]]], %[[mask]], %{{.*}} : memref, vector<16xi1>, vector<16xf32> into vector<16xf32> // CHECK-VEC16-IDX32: %[[lb:.*]] = vector.gather %{{.*}}[%[[c0]]] [%[[li]]], %[[mask]], %{{.*}} : memref<1024xf32>, vector<16xi32>, vector<16xi1>, vector<16xf32> into vector<16xf32> // CHECK-VEC16-IDX32: %[[m:.*]] = arith.mulf %[[la]], %[[lb]] : vector<16xf32> // CHECK-VEC16-IDX32: vector.scatter %{{.*}}[%[[c0]]] [%[[li]]], %[[mask]], %[[m]] : memref<1024xf32>, vector<16xi32>, vector<16xi1>, vector<16xf32> // CHECK-VEC16-IDX32: } // CHECK-VEC16-IDX32: return // // CHECK-VEC4-SVE: #[[$map:.*]] = affine_map<(d0, d1)[s0] -> (s0, d0 - d1) // CHECK-VEC4-SVE-LABEL: func @mul_s // CHECK-VEC4-SVE-DAG: %[[c0:.*]] = arith.constant 0 : index // CHECK-VEC4-SVE-DAG: %[[c1:.*]] = arith.constant 1 : index // CHECK-VEC4-SVE-DAG: %[[c4:.*]] = arith.constant 4 : index // CHECK-VEC4-SVE-DAG: %[[v0i:.*]] = arith.constant dense<0> : vector<[4]xi32> // CHECK-VEC4-SVE-DAG: %[[v0f:.*]] = arith.constant dense<0.000000e+00> : vector<[4]xf32> // CHECK-VEC4-SVE: %[[p:.*]] = memref.load %{{.*}}[%[[c0]]] : memref // CHECK-VEC4-SVE: %[[a:.*]] = arith.extui %[[p]] : i32 to i64 // CHECK-VEC4-SVE: %[[q:.*]] = arith.index_cast %[[a]] : i64 to index // CHECK-VEC4-SVE: %[[r:.*]] = memref.load %{{.*}}[%[[c1]]] : memref // CHECK-VEC4-SVE: %[[b:.*]] = arith.extui %[[r]] : i32 to i64 // CHECK-VEC4-SVE: %[[s:.*]] = arith.index_cast %[[b]] : i64 to index // CHECK-VEC4-SVE: %[[vscale:.*]] = vector.vscale // CHECK-VEC4-SVE: %[[step:.*]] = arith.muli %[[vscale]], %[[c4]] : index // CHECK-VEC4-SVE: scf.for %[[i:.*]] = %[[q]] to %[[s]] step %[[step]] { // CHECK-VEC4-SVE: %[[sub:.*]] = affine.min #[[$map]](%[[s]], %[[i]])[%[[step]]] // CHECK-VEC4-SVE: %[[mask:.*]] = vector.create_mask %[[sub]] : vector<[4]xi1> // CHECK-VEC4-SVE: %[[li:.*]] = vector.maskedload %{{.*}}[%[[i]]], %[[mask]], %[[v0i]] : memref, vector<[4]xi1>, vector<[4]xi32> into vector<[4]xi32> // CHECK-VEC4-SVE: %[[lii64:.*]] = arith.extui %[[li]] : vector<[4]xi32> to vector<[4]xi64> // CHECK-VEC4-SVE: %[[la:.*]] = vector.maskedload %{{.*}}[%[[i]]], %[[mask]], %[[v0f]] : memref, vector<[4]xi1>, vector<[4]xf32> into vector<[4]xf32> // CHECK-VEC4-SVE: %[[lb:.*]] = vector.gather %{{.*}}[%[[c0]]] [%[[lii64]]], %[[mask]], %[[v0f]] : memref<1024xf32>, vector<[4]xi64>, vector<[4]xi1>, vector<[4]xf32> into vector<[4]xf32> // CHECK-VEC4-SVE: %[[m:.*]] = arith.mulf %[[la]], %[[lb]] : vector<[4]xf32> // CHECK-VEC4-SVE: vector.scatter %{{.*}}[%[[c0]]] [%[[lii64]]], %[[mask]], %[[m]] : memref<1024xf32>, vector<[4]xi64>, vector<[4]xi1>, vector<[4]xf32> // CHECK-VEC4-SVE: } // CHECK-VEC4-SVE: return // func.func @mul_s(%arga: tensor<1024xf32, #SparseVector>, %argb: tensor<1024xf32>, %argx: tensor<1024xf32>) -> tensor<1024xf32> { %0 = linalg.generic #trait_mul_s ins(%arga, %argb: tensor<1024xf32, #SparseVector>, tensor<1024xf32>) outs(%argx: tensor<1024xf32>) { ^bb(%a: f32, %b: f32, %x: f32): %0 = arith.mulf %a, %b : f32 linalg.yield %0 : f32 } -> tensor<1024xf32> return %0 : tensor<1024xf32> } // ----- #DenseVector = #sparse_tensor.encoding<{ map = (d0) -> (d0 : dense) }> #trait_reduction_d = { indexing_maps = [ affine_map<(i) -> (i)>, // a affine_map<(i) -> (i)>, // b affine_map<(i) -> ()> // x (out) ], iterator_types = ["reduction"], doc = "x += a(i) * b(i)" } // // CHECK-SCALAR-LABEL: func @reduction_d // CHECK-SCALAR-DAG: %[[c0:.*]] = arith.constant 0 : index // CHECK-SCALAR-DAG: %[[c1:.*]] = arith.constant 1 : index // CHECK-SCALAR-DAG: %[[c1024:.*]] = arith.constant 1024 : index // CHECK-SCALAR: %[[red:.*]] = scf.for %[[i:.*]] = %[[c0]] to %[[c1024]] step %[[c1]] iter_args(%[[red_in:.*]] = %{{.*}}) -> (f32) { // CHECK-SCALAR: %[[la:.*]] = memref.load %{{.*}}[%[[i]]] : memref // CHECK-SCALAR: %[[lb:.*]] = memref.load %{{.*}}[%[[i]]] : memref<1024xf32> // CHECK-SCALAR: %[[m:.*]] = arith.mulf %[[la]], %[[lb]] : f32 // CHECK-SCALAR: %[[a:.*]] = arith.addf %[[red_in]], %[[m]] : f32 // CHECK-SCALAR: scf.yield %[[a]] : f32 // CHECK-SCALAR: } // CHECK-SCALAR: return // // CHECK-VEC16-LABEL: func @reduction_d // CHECK-VEC16-DAG: %[[c0:.*]] = arith.constant 0 : index // CHECK-VEC16-DAG: %[[c16:.*]] = arith.constant 16 : index // CHECK-VEC16-DAG: %[[c1024:.*]] = arith.constant 1024 : index // CHECK-VEC16-DAG: %[[v0:.*]] = arith.constant dense<0.000000e+00> : vector<16xf32> // CHECK-VEC16: %[[l:.*]] = memref.load %{{.*}}[] : memref // CHECK-VEC16: %[[r:.*]] = vector.insertelement %[[l]], %[[v0]][%[[c0]] : index] : vector<16xf32> // CHECK-VEC16: %[[red:.*]] = scf.for %[[i:.*]] = %[[c0]] to %[[c1024]] step %[[c16]] iter_args(%[[red_in:.*]] = %[[r]]) -> (vector<16xf32>) { // CHECK-VEC16: %[[la:.*]] = vector.load %{{.*}}[%[[i]]] : memref, vector<16xf32> // CHECK-VEC16: %[[lb:.*]] = vector.load %{{.*}}[%[[i]]] : memref<1024xf32>, vector<16xf32> // CHECK-VEC16: %[[m:.*]] = arith.mulf %[[la]], %[[lb]] : vector<16xf32> // CHECK-VEC16: %[[a:.*]] = arith.addf %[[red_in]], %[[m]] : vector<16xf32> // CHECK-VEC16: scf.yield %[[a]] : vector<16xf32> // CHECK-VEC16: } // CHECK-VEC16: %{{.*}} = vector.reduction , %[[red]] : vector<16xf32> into f32 // CHECK-VEC16: return // // CHECK-VEC16-IDX32-LABEL: func @reduction_d // CHECK-VEC16-IDX32-DAG: %[[c0:.*]] = arith.constant 0 : index // CHECK-VEC16-IDX32-DAG: %[[c16:.*]] = arith.constant 16 : index // CHECK-VEC16-IDX32-DAG: %[[c1024:.*]] = arith.constant 1024 : index // CHECK-VEC16-IDX32-DAG: %[[v0:.*]] = arith.constant dense<0.000000e+00> : vector<16xf32> // CHECK-VEC16-IDX32: %[[l:.*]] = memref.load %{{.*}}[] : memref // CHECK-VEC16-IDX32: %[[r:.*]] = vector.insertelement %[[l]], %[[v0]][%[[c0]] : index] : vector<16xf32> // CHECK-VEC16-IDX32: %[[red:.*]] = scf.for %[[i:.*]] = %[[c0]] to %[[c1024]] step %[[c16]] iter_args(%[[red_in:.*]] = %[[r]]) -> (vector<16xf32>) { // CHECK-VEC16-IDX32: %[[la:.*]] = vector.load %{{.*}}[%[[i]]] : memref, vector<16xf32> // CHECK-VEC16-IDX32: %[[lb:.*]] = vector.load %{{.*}}[%[[i]]] : memref<1024xf32>, vector<16xf32> // CHECK-VEC16-IDX32: %[[m:.*]] = arith.mulf %[[la]], %[[lb]] : vector<16xf32> // CHECK-VEC16-IDX32: %[[a:.*]] = arith.addf %[[red_in]], %[[m]] : vector<16xf32> // CHECK-VEC16-IDX32: scf.yield %[[a]] : vector<16xf32> // CHECK-VEC16-IDX32: } // CHECK-VEC16-IDX32: %{{.*}} = vector.reduction , %[[red]] : vector<16xf32> into f32 // CHECK-VEC16-IDX32: return // // CHECK-VEC4-SVE: #[[$map:.*]] = affine_map<(d0, d1)[s0] -> (s0, d0 - d1) // CHECK-VEC4-SVE-LABEL: func @reduction_d // CHECK-VEC4-SVE-DAG: %[[c0:.*]] = arith.constant 0 : index // CHECK-VEC4-SVE-DAG: %[[c4:.*]] = arith.constant 4 : index // CHECK-VEC4-SVE-DAG: %[[c1024:.*]] = arith.constant 1024 : index // CHECK-VEC4-SVE-DAG: %[[v0:.*]] = arith.constant dense<0.000000e+00> : vector<[4]xf32> // CHECK-VEC4-SVE: %[[l:.*]] = memref.load %{{.*}}[] : memref // CHECK-VEC4-SVE: %[[vscale:.*]] = vector.vscale // CHECK-VEC4-SVE: %[[step:.*]] = arith.muli %[[vscale]], %[[c4]] : index // CHECK-VEC4-SVE: %[[r:.*]] = vector.insertelement %[[l]], %[[v0]][%[[c0]] : index] : vector<[4]xf32> // CHECK-VEC4-SVE: %[[red:.*]] = scf.for %[[i:.*]] = %[[c0]] to %[[c1024]] step %[[step]] iter_args(%[[red_in:.*]] = %[[r]]) -> (vector<[4]xf32>) { // CHECK-VEC4-SVE: %[[sub:.*]] = affine.min #[[$map]](%[[c1024]], %[[i]])[%[[step]]] // CHECK-VEC4-SVE: %[[mask:.*]] = vector.create_mask %[[sub]] : vector<[4]xi1> // CHECK-VEC4-SVE: %[[la:.*]] = vector.maskedload %{{.*}}[%[[i]]], %[[mask]], %[[v0]] : memref, vector<[4]xi1>, vector<[4]xf32> into vector<[4]xf32> // CHECK-VEC4-SVE: %[[lb:.*]] = vector.maskedload %{{.*}}[%[[i]]], %[[mask]], %[[v0]] : memref<1024xf32>, vector<[4]xi1>, vector<[4]xf32> into vector<[4]xf32> // CHECK-VEC4-SVE: %[[m:.*]] = arith.mulf %[[la]], %[[lb]] : vector<[4]xf32> // CHECK-VEC4-SVE: %[[a:.*]] = arith.addf %[[red_in]], %[[m]] : vector<[4]xf32> // CHECK-VEC4-SVE: %[[sa:.*]] = arith.select %[[mask]], %[[a]], %[[red_in]] : vector<[4]xi1>, vector<[4]xf32> // CHECK-VEC4-SVE: scf.yield %[[sa]] : vector<[4]xf32> // CHECK-VEC4-SVE: } // CHECK-VEC4-SVE: %{{.*}} = vector.reduction , %[[red]] : vector<[4]xf32> into f32 // CHECK-VEC4-SVE: return // func.func @reduction_d(%arga: tensor<1024xf32, #DenseVector>, %argb: tensor<1024xf32>, %argx: tensor) -> tensor { %0 = linalg.generic #trait_reduction_d ins(%arga, %argb: tensor<1024xf32, #DenseVector>, tensor<1024xf32>) outs(%argx: tensor) { ^bb(%a: f32, %b: f32, %x: f32): %0 = arith.mulf %a, %b : f32 %1 = arith.addf %x, %0 : f32 linalg.yield %1 : f32 } -> tensor return %0 : tensor } // ----- #SparseMatrix = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed), posWidth = 32, crdWidth = 32 }> #trait_mul_ds = { indexing_maps = [ affine_map<(i,j) -> (i,j)>, // A affine_map<(i,j) -> (i,j)>, // B affine_map<(i,j) -> (i,j)> // X (out) ], iterator_types = ["parallel", "parallel"], doc = "X(i,j) = A(i,j) * B(i,j)" } // // CHECK-SCALAR-LABEL: func @mul_ds // CHECK-SCALAR-DAG: %[[c0:.*]] = arith.constant 0 : index // CHECK-SCALAR-DAG: %[[c1:.*]] = arith.constant 1 : index // CHECK-SCALAR-DAG: %[[c512:.*]] = arith.constant 512 : index // CHECK-SCALAR: scf.for %[[i:.*]] = %[[c0]] to %[[c512]] step %[[c1]] { // CHECK-SCALAR: %[[p:.*]] = memref.load %{{.*}}[%[[i]]] : memref // CHECK-SCALAR: %[[a:.*]] = arith.extui %[[p]] : i32 to i64 // CHECK-SCALAR: %[[q:.*]] = arith.index_cast %[[a]] : i64 to index // CHECK-SCALAR: %[[a:.*]] = arith.addi %[[i]], %[[c1]] : index // CHECK-SCALAR: %[[r:.*]] = memref.load %{{.*}}[%[[a]]] : memref // CHECK-SCALAR: %[[b:.*]] = arith.extui %[[r]] : i32 to i64 // CHECK-SCALAR: %[[s:.*]] = arith.index_cast %[[b]] : i64 to index // CHECK-SCALAR: scf.for %[[j:.*]] = %[[q]] to %[[s]] step %[[c1]] { // CHECK-SCALAR: %[[lj:.*]] = memref.load %{{.*}}[%[[j]]] : memref // CHECK-SCALAR: %[[zj:.*]] = arith.extui %[[lj]] : i32 to i64 // CHECK-SCALAR: %[[cj:.*]] = arith.index_cast %[[zj]] : i64 to index // CHECK-SCALAR: %[[la:.*]] = memref.load %{{.*}}[%[[j]]] : memref // CHECK-SCALAR: %[[lb:.*]] = memref.load %{{.*}}[%[[i]], %[[cj]]] : memref<512x1024xf32> // CHECK-SCALAR: %[[m:.*]] = arith.mulf %[[la]], %[[lb]] : f32 // CHECK-SCALAR: store %[[m]], %{{.*}}[%[[i]], %[[cj]]] : memref<512x1024xf32> // CHECK-SCALAR: } // CHECK-SCALAR: } // CHECK-SCALAR: return // // CHECK-VEC16: #[[$map:.*]] = affine_map<(d0, d1)[s0] -> (16, d0 - d1) // CHECK-VEC16-LABEL: func @mul_ds // CHECK-VEC16-DAG: %[[c0:.*]] = arith.constant 0 : index // CHECK-VEC16-DAG: %[[c1:.*]] = arith.constant 1 : index // CHECK-VEC16-DAG: %[[c16:.*]] = arith.constant 16 : index // CHECK-VEC16-DAG: %[[c512:.*]] = arith.constant 512 : index // CHECK-VEC16: scf.for %[[i:.*]] = %[[c0]] to %[[c512]] step %[[c1]] { // CHECK-VEC16: %[[p:.*]] = memref.load %{{.*}}[%[[i]]] : memref // CHECK-VEC16: %[[a:.*]] = arith.extui %[[p]] : i32 to i64 // CHECK-VEC16: %[[q:.*]] = arith.index_cast %[[a]] : i64 to index // CHECK-VEC16: %[[a:.*]] = arith.addi %[[i]], %[[c1]] : index // CHECK-VEC16: %[[r:.*]] = memref.load %{{.*}}[%[[a]]] : memref // CHECK-VEC16: %[[b:.*]] = arith.extui %[[r]] : i32 to i64 // CHECK-VEC16: %[[s:.*]] = arith.index_cast %[[b]] : i64 to index // CHECK-VEC16: scf.for %[[j:.*]] = %[[q]] to %[[s]] step %[[c16]] { // CHECK-VEC16: %[[sub:.*]] = affine.min #[[$map]](%[[s]], %[[j]])[%[[c16]]] // CHECK-VEC16: %[[mask:.*]] = vector.create_mask %[[sub]] : vector<16xi1> // CHECK-VEC16: %[[lj:.*]] = vector.maskedload %{{.*}}[%[[j]]], %[[mask]], %{{.*}} : memref, vector<16xi1>, vector<16xi32> into vector<16xi32> // CHECK-VEC16: %[[zj:.*]] = arith.extui %[[lj]] : vector<16xi32> to vector<16xi64> // CHECK-VEC16: %[[la:.*]] = vector.maskedload %{{.*}}[%[[j]]], %[[mask]], %{{.*}} : memref, vector<16xi1>, vector<16xf32> into vector<16xf32> // CHECK-VEC16: %[[lb:.*]] = vector.gather %{{.*}}[%[[i]], %[[c0]]] [%[[zj]]], %[[mask]], %{{.*}} : memref<512x1024xf32>, vector<16xi64>, vector<16xi1>, vector<16xf32> into vector<16xf32> // CHECK-VEC16: %[[m:.*]] = arith.mulf %[[la]], %[[lb]] : vector<16xf32> // CHECK-VEC16: vector.scatter %{{.*}}[%[[i]], %[[c0]]] [%[[zj]]], %[[mask]], %[[m]] : memref<512x1024xf32>, vector<16xi64>, vector<16xi1>, vector<16xf32> // CHECK-VEC16: } // CHECK-VEC16: } // CHECK-VEC16: return // // CHECK-VEC16-IDX32: #[[$map:.*]] = affine_map<(d0, d1)[s0] -> (16, d0 - d1) // CHECK-VEC16-IDX32-LABEL: func @mul_ds // CHECK-VEC16-IDX32-DAG: %[[c0:.*]] = arith.constant 0 : index // CHECK-VEC16-IDX32-DAG: %[[c1:.*]] = arith.constant 1 : index // CHECK-VEC16-IDX32-DAG: %[[c16:.*]] = arith.constant 16 : index // CHECK-VEC16-IDX32-DAG: %[[c512:.*]] = arith.constant 512 : index // CHECK-VEC16-IDX32: scf.for %[[i:.*]] = %[[c0]] to %[[c512]] step %[[c1]] { // CHECK-VEC16-IDX32: %[[p:.*]] = memref.load %{{.*}}[%[[i]]] : memref // CHECK-VEC16-IDX32: %[[a:.*]] = arith.extui %[[p]] : i32 to i64 // CHECK-VEC16-IDX32: %[[q:.*]] = arith.index_cast %[[a]] : i64 to index // CHECK-VEC16-IDX32: %[[a:.*]] = arith.addi %[[i]], %[[c1]] : index // CHECK-VEC16-IDX32: %[[r:.*]] = memref.load %{{.*}}[%[[a]]] : memref // CHECK-VEC16-IDX32: %[[b:.*]] = arith.extui %[[r]] : i32 to i64 // CHECK-VEC16-IDX32: %[[s:.*]] = arith.index_cast %[[b]] : i64 to index // CHECK-VEC16-IDX32: scf.for %[[j:.*]] = %[[q]] to %[[s]] step %[[c16]] { // CHECK-VEC16-IDX32: %[[sub:.*]] = affine.min #[[$map]](%[[s]], %[[j]])[%[[c16]]] // CHECK-VEC16-IDX32: %[[mask:.*]] = vector.create_mask %[[sub]] : vector<16xi1> // CHECK-VEC16-IDX32: %[[lj:.*]] = vector.maskedload %{{.*}}[%[[j]]], %[[mask]], %{{.*}} : memref, vector<16xi1>, vector<16xi32> into vector<16xi32> // CHECK-VEC16-IDX32: %[[la:.*]] = vector.maskedload %{{.*}}[%[[j]]], %[[mask]], %{{.*}} : memref, vector<16xi1>, vector<16xf32> into vector<16xf32> // CHECK-VEC16-IDX32: %[[lb:.*]] = vector.gather %{{.*}}[%[[i]], %[[c0]]] [%[[lj]]], %[[mask]], %{{.*}} : memref<512x1024xf32>, vector<16xi32>, vector<16xi1>, vector<16xf32> into vector<16xf32> // CHECK-VEC16-IDX32: %[[m:.*]] = arith.mulf %[[la]], %[[lb]] : vector<16xf32> // CHECK-VEC16-IDX32: vector.scatter %{{.*}}[%[[i]], %[[c0]]] [%[[lj]]], %[[mask]], %[[m]] : memref<512x1024xf32>, vector<16xi32>, vector<16xi1>, vector<16xf32> // CHECK-VEC16-IDX32: } // CHECK-VEC16-IDX32: } // CHECK-VEC16-IDX32: return // // CHECK-VEC4-SVE: #[[$map:.*]] = affine_map<(d0, d1)[s0] -> (s0, d0 - d1) // CHECK-VEC4-SVE-LABEL: func @mul_ds // CHECK-VEC4-SVE-DAG: %[[c0:.*]] = arith.constant 0 : index // CHECK-VEC4-SVE-DAG: %[[c1:.*]] = arith.constant 1 : index // CHECK-VEC4-SVE-DAG: %[[c4:.*]] = arith.constant 4 : index // CHECK-VEC4-SVE-DAG: %[[c512:.*]] = arith.constant 512 : index // CHECK-VEC4-SVE-DAG: %[[v0i:.*]] = arith.constant dense<0> : vector<[4]xi32> // CHECK-VEC4-SVE-DAG: %[[v0f:.*]] = arith.constant dense<0.000000e+00> : vector<[4]xf32> // CHECK-VEC4-SVE: scf.for %[[i:.*]] = %[[c0]] to %[[c512]] step %[[c1]] { // CHECK-VEC4-SVE: %[[p:.*]] = memref.load %{{.*}}[%[[i]]] : memref // CHECK-VEC4-SVE: %[[a:.*]] = arith.extui %[[p]] : i32 to i64 // CHECK-VEC4-SVE: %[[q:.*]] = arith.index_cast %[[a]] : i64 to index // CHECK-VEC4-SVE: %[[a:.*]] = arith.addi %[[i]], %[[c1]] : index // CHECK-VEC4-SVE: %[[r:.*]] = memref.load %{{.*}}[%[[a]]] : memref // CHECK-VEC4-SVE: %[[b:.*]] = arith.extui %[[r]] : i32 to i64 // CHECK-VEC4-SVE: %[[s:.*]] = arith.index_cast %[[b]] : i64 to index // CHECK-VEC4-SVE: %[[vscale:.*]] = vector.vscale // CHECK-VEC4-SVE: %[[step:.*]] = arith.muli %[[vscale]], %[[c4]] : index // CHECK-VEC4-SVE: scf.for %[[j:.*]] = %[[q]] to %[[s]] step %[[step]] { // CHECK-VEC4-SVE: %[[sub:.*]] = affine.min #[[$map]](%[[s]], %[[j]])[%[[step]]] // CHECK-VEC4-SVE: %[[mask:.*]] = vector.create_mask %[[sub]] : vector<[4]xi1> // CHECK-VEC4-SVE: %[[lji32:.*]] = vector.maskedload %{{.*}}[%[[j]]], %[[mask]], %[[v0i]] : memref, vector<[4]xi1>, vector<[4]xi32> into vector<[4]xi32> // CHECK-VEC4-SVE: %[[lj:.*]] = arith.extui %[[lji32]] : vector<[4]xi32> to vector<[4]xi64> // CHECK-VEC4-SVE: %[[la:.*]] = vector.maskedload %{{.*}}[%[[j]]], %[[mask]], %[[v0f]] : memref, vector<[4]xi1>, vector<[4]xf32> into vector<[4]xf32> // CHECK-VEC4-SVE: %[[lb:.*]] = vector.gather %{{.*}}[%[[i]], %[[c0]]] [%[[lj]]], %[[mask]], %[[v0f]] : memref<512x1024xf32>, vector<[4]xi64>, vector<[4]xi1>, vector<[4]xf32> into vector<[4]xf32> // CHECK-VEC4-SVE: %[[m:.*]] = arith.mulf %[[la]], %[[lb]] : vector<[4]xf32> // CHECK-VEC4-SVE: vector.scatter %{{.*}}[%[[i]], %[[c0]]] [%[[lj]]], %[[mask]], %[[m]] : memref<512x1024xf32>, vector<[4]xi64>, vector<[4]xi1>, vector<[4]xf32> // CHECK-VEC4-SVE: } // CHECK-VEC4-SVE: } // CHECK-VEC4-SVE: return // func.func @mul_ds(%arga: tensor<512x1024xf32, #SparseMatrix>, %argb: tensor<512x1024xf32>, %argx: tensor<512x1024xf32>) -> tensor<512x1024xf32> { %0 = linalg.generic #trait_mul_ds ins(%arga, %argb: tensor<512x1024xf32, #SparseMatrix>, tensor<512x1024xf32>) outs(%argx: tensor<512x1024xf32>) { ^bb(%a: f32, %b: f32, %x: f32): %0 = arith.mulf %a, %b : f32 linalg.yield %0 : f32 } -> tensor<512x1024xf32> return %0 : tensor<512x1024xf32> } // ----- #SparseMatrix = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : dense, d1 : compressed)}> #trait_affine = { indexing_maps = [ affine_map<(i,j) -> (i,j)>, affine_map<(i,j) -> (i+1,j)> ], iterator_types = ["parallel","parallel"], doc = "X(i+1,j) += A(i,j)" } // // CHECK-SCALAR-LABEL: func @add_dense // CHECK-SCALAR-DAG: %[[c0:.*]] = arith.constant 0 : index // CHECK-SCALAR-DAG: %[[c1:.*]] = arith.constant 1 : index // CHECK-SCALAR-DAG: %[[c32:.*]] = arith.constant 32 : index // CHECK-SCALAR: scf.for %[[i:.*]] = %[[c0]] to %[[c32]] step %[[c1]] { // CHECK-SCALAR: %[[lo:.*]] = memref.load %{{.*}}[%[[i]]] : memref // CHECK-SCALAR: %[[i1:.*]] = arith.addi %[[i]], %[[c1]] : index // CHECK-SCALAR: %[[hi:.*]] = memref.load %{{.*}}[%[[i1]]] : memref // CHECK-SCALAR: scf.for %[[jj:.*]] = %[[lo]] to %[[hi]] step %[[c1]] { // CHECK-SCALAR: %[[j:.*]] = memref.load %{{.*}}[%[[jj]]] : memref // CHECK-SCALAR: %[[x:.*]] = memref.load %{{.*}}[%[[i1]], %[[j]]] : memref<33x64xf64> // CHECK-SCALAR: %[[a:.*]] = memref.load %{{.*}}[%[[jj]]] : memref // CHECK-SCALAR: %[[s:.*]] = arith.addf %[[x]], %[[a]] : f64 // CHECK-SCALAR: memref.store %[[s]], %{{.*}}[%[[i1]], %[[j]]] : memref<33x64xf64> // CHECK-SCALAR: } // CHECK-SCALAR: } // CHECK-SCALAR: return // // CHECK-VEC16: #[[$map:.*]] = affine_map<(d0, d1)[s0] -> (16, d0 - d1) // CHECK-VEC16-LABEL: func @add_dense // CHECK-VEC16-DAG: %[[c0:.*]] = arith.constant 0 : index // CHECK-VEC16-DAG: %[[c1:.*]] = arith.constant 1 : index // CHECK-VEC16-DAG: %[[c16:.*]] = arith.constant 16 : index // CHECK-VEC16-DAG: %[[c32:.*]] = arith.constant 32 : index // CHECK-VEC16: scf.for %[[i:.*]] = %[[c0]] to %[[c32]] step %[[c1]] { // CHECK-VEC16: %[[lo:.*]] = memref.load %{{.*}}[%[[i]]] : memref // CHECK-VEC16: %[[i1:.*]] = arith.addi %[[i]], %[[c1]] : index // CHECK-VEC16: %[[hi:.*]] = memref.load %{{.*}}[%[[i1]]] : memref // CHECK-VEC16: scf.for %[[jj:.*]] = %[[lo]] to %[[hi]] step %[[c16]] { // CHECK-VEC16: %[[sub:.*]] = affine.min #[[$map]](%[[hi]], %[[jj]])[%[[c16]]] // CHECK-VEC16: %[[mask:.*]] = vector.create_mask %[[sub]] : vector<16xi1> // CHECK-VEC16: %[[j:.*]] = vector.maskedload %{{.*}}[%[[jj]]], %[[mask]], %{{.*}} : memref // CHECK-VEC16: %[[x:.*]] = vector.gather %{{.*}}[%[[i1]], %[[c0]]] [%[[j]]], %[[mask]], %{{.*}} : memref<33x64xf64> // CHECK-VEC16: %[[a:.*]] = vector.maskedload %{{.*}}[%[[jj]]], %[[mask]], %{{.*}} : memref // CHECK-VEC16: %[[s:.*]] = arith.addf %[[x]], %[[a]] : vector<16xf64> // CHECK-VEC16: vector.scatter %{{.*}}[%[[i1]], %[[c0]]] [%[[j]]], %[[mask]], %[[s]] : memref<33x64xf64> // CHECK-VEC16: } // CHECK-VEC16: } // CHECK-VEC16: return // // CHECK-VEC16-IDX32: #[[$map:.*]] = affine_map<(d0, d1)[s0] -> (16, d0 - d1) // CHECK-VEC16-IDX32-LABEL: func @add_dense // CHECK-VEC16-IDX32-DAG: %[[c0:.*]] = arith.constant 0 : index // CHECK-VEC16-IDX32-DAG: %[[c1:.*]] = arith.constant 1 : index // CHECK-VEC16-IDX32-DAG: %[[c16:.*]] = arith.constant 16 : index // CHECK-VEC16-IDX32-DAG: %[[c32:.*]] = arith.constant 32 : index // CHECK-VEC16-IDX32: scf.for %[[i:.*]] = %[[c0]] to %[[c32]] step %[[c1]] { // CHECK-VEC16-IDX32: %[[lo:.*]] = memref.load %{{.*}}[%[[i]]] : memref // CHECK-VEC16-IDX32: %[[i1:.*]] = arith.addi %[[i]], %[[c1]] : index // CHECK-VEC16-IDX32: %[[hi:.*]] = memref.load %{{.*}}[%[[i1]]] : memref // CHECK-VEC16-IDX32: scf.for %[[jj:.*]] = %[[lo]] to %[[hi]] step %[[c16]] { // CHECK-VEC16-IDX32: %[[sub:.*]] = affine.min #[[$map]](%[[hi]], %[[jj]])[%[[c16]]] // CHECK-VEC16-IDX32: %[[mask:.*]] = vector.create_mask %[[sub]] : vector<16xi1> // CHECK-VEC16-IDX32: %[[j:.*]] = vector.maskedload %{{.*}}[%[[jj]]], %[[mask]], %{{.*}} : memref // CHECK-VEC16-IDX32: %[[x:.*]] = vector.gather %{{.*}}[%[[i1]], %[[c0]]] [%[[j]]], %[[mask]], %{{.*}} : memref<33x64xf64> // CHECK-VEC16-IDX32: %[[a:.*]] = vector.maskedload %{{.*}}[%[[jj]]], %[[mask]], %{{.*}} : memref // CHECK-VEC16-IDX32: %[[s:.*]] = arith.addf %[[x]], %[[a]] : vector<16xf64> // CHECK-VEC16-IDX32: vector.scatter %{{.*}}[%[[i1]], %[[c0]]] [%[[j]]], %[[mask]], %[[s]] : memref<33x64xf64> // CHECK-VEC16-IDX32: } // CHECK-VEC16-IDX32: } // CHECK-VEC16-IDX32: return // // CHECK-VEC4-SVE: #[[$map:.*]] = affine_map<(d0, d1)[s0] -> (s0, d0 - d1) // CHECK-VEC4-SVE-LABEL: func @add_dense // CHECK-VEC4-SVE-DAG: %[[c0:.*]] = arith.constant 0 : index // CHECK-VEC4-SVE-DAG: %[[c1:.*]] = arith.constant 1 : index // CHECK-VEC4-SVE-DAG: %[[c4:.*]] = arith.constant 4 : index // CHECK-VEC4-SVE-DAG: %[[c32:.*]] = arith.constant 32 : index // CHECK-VEC4-SVE-DAG: %[[v0idx:.*]] = arith.constant dense<0> : vector<[4]xindex> // CHECK-VEC4-SVE-DAG: %[[v0f64:.*]] = arith.constant dense<0.000000e+00> : vector<[4]xf64> // CHECK-VEC4-SVE: scf.for %[[i:.*]] = %[[c0]] to %[[c32]] step %[[c1]] { // CHECK-VEC4-SVE: %[[lo:.*]] = memref.load %{{.*}}[%[[i]]] : memref // CHECK-VEC4-SVE: %[[i1:.*]] = arith.addi %[[i]], %[[c1]] : index // CHECK-VEC4-SVE: %[[hi:.*]] = memref.load %{{.*}}[%[[i1]]] : memref // CHECK-VEC4-SVE: %[[vscale:.*]] = vector.vscale // CHECK-VEC4-SVE: %[[step:.*]] = arith.muli %[[vscale]], %[[c4]] : index // CHECK-VEC4-SVE: scf.for %[[jj:.*]] = %[[lo]] to %[[hi]] step %[[step]] { // CHECK-VEC4-SVE: %[[sub:.*]] = affine.min #[[$map]](%[[hi]], %[[jj]])[%[[step]]] // CHECK-VEC4-SVE: %[[mask:.*]] = vector.create_mask %[[sub]] : vector<[4]xi1> // CHECK-VEC4-SVE: %[[j:.*]] = vector.maskedload %{{.*}}[%[[jj]]], %[[mask]], %[[v0idx]] : memref // CHECK-VEC4-SVE: %[[x:.*]] = vector.gather %{{.*}}[%[[i1]], %[[c0]]] [%[[j]]], %[[mask]], %[[v0f64]] : memref<33x64xf64> // CHECK-VEC4-SVE: %[[a:.*]] = vector.maskedload %{{.*}}[%[[jj]]], %[[mask]], %[[v0f64]] : memref // CHECK-VEC4-SVE: %[[s:.*]] = arith.addf %[[x]], %[[a]] : vector<[4]xf64> // CHECK-VEC4-SVE: vector.scatter %{{.*}}[%[[i1]], %[[c0]]] [%[[j]]], %[[mask]], %[[s]] : memref<33x64xf64> // CHECK-VEC4-SVE: } // CHECK-VEC4-SVE: } // CHECK-VEC4-SVE: return // func.func @add_dense(%arga: tensor<32x64xf64, #SparseMatrix>, %argx: tensor<33x64xf64>) -> tensor<33x64xf64> { %0 = linalg.generic #trait_affine ins(%arga: tensor<32x64xf64, #SparseMatrix>) outs(%argx: tensor<33x64xf64>) { ^bb(%a: f64, %x: f64): %0 = arith.addf %x, %a : f64 linalg.yield %0 : f64 } -> tensor<33x64xf64> return %0 : tensor<33x64xf64> }