// RUN: mlir-opt %s --sparsifier="enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true" #MAT_D_C = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed) }> #MAT_C_C_P = #sparse_tensor.encoding<{ map = (d0, d1) -> (d1 : compressed, d0 : compressed) }> #MAT_C_D_P = #sparse_tensor.encoding<{ map = (d0, d1) -> (d1 : compressed, d0 : dense) }> // // Ensures only last loop is vectorized // (vectorizing the others would crash). // // CHECK-LABEL: llvm.func @foo // CHECK: llvm.intr.masked.load // CHECK: llvm.intr.masked.scatter // func.func @foo(%arg0: tensor<2x4xf64, #MAT_C_C_P>, %arg1: tensor<3x4xf64, #MAT_C_D_P>, %arg2: tensor<4x4xf64, #MAT_D_C>) -> tensor<9x4xf64> { %0 = sparse_tensor.concatenate %arg0, %arg1, %arg2 {dimension = 0 : index} : tensor<2x4xf64, #MAT_C_C_P>, tensor<3x4xf64, #MAT_C_D_P>, tensor<4x4xf64, #MAT_D_C> to tensor<9x4xf64> return %0 : tensor<9x4xf64> }