// RUN: mlir-opt %s --sparse-reinterpret-map -sparsification -cse -sparse-vectorization="vl=8" -cse -split-input-file | \ // RUN: FileCheck %s --check-prefix=CHECK-ON // RUN: mlir-opt %s --sparse-reinterpret-map -sparsification -cse -split-input-file | \ // RUN: FileCheck %s --check-prefix=CHECK-OFF // ----- // Check that we vectorize reductions with ori. // CHECK-ON-LABEL: func.func @sparse_reduction_ori( // CHECK-ON-SAME: %[[VAL_0:.*]]: tensor, // CHECK-ON-SAME: %[[VAL_1:.*]]: tensor) -> tensor { // CHECK-ON-DAG: %[[VAL_2:.*]] = arith.constant 8 : index // CHECK-ON-DAG: %[[VAL_3:.*]] = arith.constant dense<0> : vector<8xi13> // CHECK-ON-DAG: %[[VAL_4:.*]] = arith.constant 0 : index // CHECK-ON-DAG: %[[VAL_5:.*]] = arith.constant 1 : index // CHECK-ON: %[[VAL_6:.*]] = sparse_tensor.positions %[[VAL_1]] {level = 0 : index} : tensor to memref // CHECK-ON: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_1]] : tensor to memref // CHECK-ON: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_0]] : memref // CHECK-ON: %[[VAL_9:.*]] = memref.load %[[VAL_8]][] : memref // CHECK-ON: %[[VAL_10:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_4]]] : memref // CHECK-ON: %[[VAL_11:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_5]]] : memref // CHECK-ON: %[[VAL_12:.*]] = vector.broadcast %[[VAL_9]] : i13 to vector<8xi13> // CHECK-ON: %[[VAL_13:.*]] = scf.for %[[VAL_14:.*]] = %[[VAL_10]] to %[[VAL_11]] step %[[VAL_2]] iter_args(%[[VAL_15:.*]] = %[[VAL_12]]) -> (vector<8xi13>) { // CHECK-ON: %[[VAL_16:.*]] = affine.min #map(%[[VAL_11]], %[[VAL_14]]){{\[}}%[[VAL_2]]] // CHECK-ON: %[[VAL_17:.*]] = vector.create_mask %[[VAL_16]] : vector<8xi1> // CHECK-ON: %[[VAL_18:.*]] = vector.maskedload %[[VAL_7]]{{\[}}%[[VAL_14]]], %[[VAL_17]], %[[VAL_3]] : memref, vector<8xi1>, vector<8xi13> into vector<8xi13> // CHECK-ON: %[[VAL_19:.*]] = arith.ori %[[VAL_15]], %[[VAL_18]] : vector<8xi13> // CHECK-ON: %[[VAL_20:.*]] = arith.select %[[VAL_17]], %[[VAL_19]], %[[VAL_15]] : vector<8xi1>, vector<8xi13> // CHECK-ON: scf.yield %[[VAL_20]] : vector<8xi13> // CHECK-ON: } {"Emitted from" = "linalg.generic"} // CHECK-ON: %[[VAL_21:.*]] = vector.reduction , %[[VAL_22:.*]] : vector<8xi13> into i13 // CHECK-ON: memref.store %[[VAL_21]], %[[VAL_8]][] : memref // CHECK-ON: %[[VAL_23:.*]] = bufferization.to_tensor %[[VAL_8]] : memref // CHECK-ON: return %[[VAL_23]] : tensor // CHECK-ON: } // // CHECK-OFF-LABEL: func.func @sparse_reduction_ori( // CHECK-OFF-SAME: %[[VAL_0:.*]]: tensor, // CHECK-OFF-SAME: %[[VAL_1:.*]]: tensor) -> tensor { // CHECK-OFF-DAG: %[[VAL_2:.*]] = arith.constant 0 : index // CHECK-OFF-DAG: %[[VAL_3:.*]] = arith.constant 1 : index // CHECK-OFF: %[[VAL_4:.*]] = sparse_tensor.positions %[[VAL_1]] {level = 0 : index} : tensor to memref // CHECK-OFF: %[[VAL_5:.*]] = sparse_tensor.values %[[VAL_1]] : tensor to memref // CHECK-OFF: %[[VAL_6:.*]] = bufferization.to_memref %[[VAL_0]] : memref // CHECK-OFF: %[[VAL_7:.*]] = memref.load %[[VAL_6]][] : memref // CHECK-OFF: %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref // CHECK-OFF: %[[VAL_9:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_3]]] : memref // CHECK-OFF: %[[VAL_10:.*]] = scf.for %[[VAL_11:.*]] = %[[VAL_8]] to %[[VAL_9]] step %[[VAL_3]] iter_args(%[[VAL_12:.*]] = %[[VAL_7]]) -> (i13) { // CHECK-OFF: %[[VAL_13:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_11]]] : memref // CHECK-OFF: %[[VAL_14:.*]] = arith.ori %[[VAL_12]], %[[VAL_13]] : i13 // CHECK-OFF: scf.yield %[[VAL_14]] : i13 // CHECK-OFF: } {"Emitted from" = "linalg.generic"} // CHECK-OFF: memref.store %[[VAL_15:.*]], %[[VAL_6]][] : memref // CHECK-OFF: %[[VAL_16:.*]] = bufferization.to_tensor %[[VAL_6]] : memref // CHECK-OFF: return %[[VAL_16]] : tensor // CHECK-OFF: } #SparseVector = #sparse_tensor.encoding<{map = (d0) -> (d0 : compressed)}> #trait = { indexing_maps = [ affine_map<(i) -> (i)>, // a (in) affine_map<(i) -> ()> // x (out) ], iterator_types = ["reduction"] } func.func @sparse_reduction_ori(%argx: tensor, %arga: tensor) -> tensor { %0 = linalg.generic #trait ins(%arga: tensor) outs(%argx: tensor) { ^bb(%a: i13, %x: i13): %t = arith.ori %x, %a: i13 linalg.yield %t : i13 } -> tensor return %0 : tensor } // ----- // Same test as sparse_reduction_ori except that the accumulator is on the // rhs of the operation. This checks that we can recognize a reduction // irrespective to where the accumulator appears on commutative operations. // CHECK-ON-LABEL: func.func @sparse_reduction_ori_accumulator_on_rhs( // CHECK-ON-SAME: %[[VAL_0:.*]]: tensor, // CHECK-ON-SAME: %[[VAL_1:.*]]: tensor) -> tensor { // CHECK-ON-DAG: %[[VAL_2:.*]] = arith.constant 8 : index // CHECK-ON-DAG: %[[VAL_3:.*]] = arith.constant dense<0> : vector<8xi13> // CHECK-ON-DAG: %[[VAL_4:.*]] = arith.constant 0 : index // CHECK-ON-DAG: %[[VAL_5:.*]] = arith.constant 1 : index // CHECK-ON: %[[VAL_6:.*]] = sparse_tensor.positions %[[VAL_1]] {level = 0 : index} : tensor to memref // CHECK-ON: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_1]] : tensor to memref // CHECK-ON: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_0]] : memref // CHECK-ON: %[[VAL_9:.*]] = memref.load %[[VAL_8]][] : memref // CHECK-ON: %[[VAL_10:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_4]]] : memref // CHECK-ON: %[[VAL_11:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_5]]] : memref // CHECK-ON: %[[VAL_12:.*]] = vector.broadcast %[[VAL_9]] : i13 to vector<8xi13> // CHECK-ON: %[[VAL_13:.*]] = scf.for %[[VAL_14:.*]] = %[[VAL_10]] to %[[VAL_11]] step %[[VAL_2]] iter_args(%[[VAL_15:.*]] = %[[VAL_12]]) -> (vector<8xi13>) { // CHECK-ON: %[[VAL_16:.*]] = affine.min #map(%[[VAL_11]], %[[VAL_14]]){{\[}}%[[VAL_2]]] // CHECK-ON: %[[VAL_17:.*]] = vector.create_mask %[[VAL_16]] : vector<8xi1> // CHECK-ON: %[[VAL_18:.*]] = vector.maskedload %[[VAL_7]]{{\[}}%[[VAL_14]]], %[[VAL_17]], %[[VAL_3]] : memref, vector<8xi1>, vector<8xi13> into vector<8xi13> // CHECK-ON: %[[VAL_19:.*]] = arith.ori %[[VAL_18]], %[[VAL_15]] : vector<8xi13> // CHECK-ON: %[[VAL_20:.*]] = arith.select %[[VAL_17]], %[[VAL_19]], %[[VAL_15]] : vector<8xi1>, vector<8xi13> // CHECK-ON: scf.yield %[[VAL_20]] : vector<8xi13> // CHECK-ON: } {"Emitted from" = "linalg.generic"} // CHECK-ON: %[[VAL_21:.*]] = vector.reduction , %[[VAL_22:.*]] : vector<8xi13> into i13 // CHECK-ON: memref.store %[[VAL_21]], %[[VAL_8]][] : memref // CHECK-ON: %[[VAL_23:.*]] = bufferization.to_tensor %[[VAL_8]] : memref // CHECK-ON: return %[[VAL_23]] : tensor // CHECK-ON: } // // CHECK-OFF-LABEL: func.func @sparse_reduction_ori_accumulator_on_rhs( // CHECK-OFF-SAME: %[[VAL_0:.*]]: tensor, // CHECK-OFF-SAME: %[[VAL_1:.*]]: tensor) -> tensor { // CHECK-OFF-DAG: %[[VAL_2:.*]] = arith.constant 0 : index // CHECK-OFF-DAG: %[[VAL_3:.*]] = arith.constant 1 : index // CHECK-OFF: %[[VAL_4:.*]] = sparse_tensor.positions %[[VAL_1]] {level = 0 : index} : tensor to memref // CHECK-OFF: %[[VAL_5:.*]] = sparse_tensor.values %[[VAL_1]] : tensor to memref // CHECK-OFF: %[[VAL_6:.*]] = bufferization.to_memref %[[VAL_0]] : memref // CHECK-OFF: %[[VAL_7:.*]] = memref.load %[[VAL_6]][] : memref // CHECK-OFF: %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref // CHECK-OFF: %[[VAL_9:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_3]]] : memref // CHECK-OFF: %[[VAL_10:.*]] = scf.for %[[VAL_11:.*]] = %[[VAL_8]] to %[[VAL_9]] step %[[VAL_3]] iter_args(%[[VAL_12:.*]] = %[[VAL_7]]) -> (i13) { // CHECK-OFF: %[[VAL_13:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_11]]] : memref // CHECK-OFF: %[[VAL_14:.*]] = arith.ori %[[VAL_13]], %[[VAL_12]] : i13 // CHECK-OFF: scf.yield %[[VAL_14]] : i13 // CHECK-OFF: } {"Emitted from" = "linalg.generic"} // CHECK-OFF: memref.store %[[VAL_15:.*]], %[[VAL_6]][] : memref // CHECK-OFF: %[[VAL_16:.*]] = bufferization.to_tensor %[[VAL_6]] : memref // CHECK-OFF: return %[[VAL_16]] : tensor // CHECK-OFF: } #SparseVector = #sparse_tensor.encoding<{map = (d0) -> (d0 : compressed)}> #trait = { indexing_maps = [ affine_map<(i) -> (i)>, // a (in) affine_map<(i) -> ()> // x (out) ], iterator_types = ["reduction"] } func.func @sparse_reduction_ori_accumulator_on_rhs(%argx: tensor, %arga: tensor) -> tensor { %0 = linalg.generic #trait ins(%arga: tensor) outs(%argx: tensor) { ^bb(%a: i13, %x: i13): %t = arith.ori %a, %x: i13 linalg.yield %t : i13 } -> tensor return %0 : tensor } // ----- // Check that we vectorize reductions with subi. // // CHECK-ON-LABEL: func.func @sparse_reduction_subi( // CHECK-ON-SAME: %[[VAL_0:.*]]: tensor, // CHECK-ON-SAME: %[[VAL_1:.*]]: tensor) -> tensor { // CHECK-ON-DAG: %[[VAL_2:.*]] = arith.constant 8 : index // CHECK-ON-DAG: %[[VAL_3:.*]] = arith.constant 0 : index // CHECK-ON-DAG: %[[VAL_4:.*]] = arith.constant dense<0> : vector<8xi32> // CHECK-ON-DAG: %[[VAL_5:.*]] = arith.constant 1 : index // CHECK-ON: %[[VAL_6:.*]] = sparse_tensor.positions %[[VAL_1]] {level = 0 : index} : tensor to memref // CHECK-ON: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_1]] : tensor to memref // CHECK-ON: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_0]] : memref // CHECK-ON: %[[VAL_9:.*]] = memref.load %[[VAL_8]][] : memref // CHECK-ON: %[[VAL_10:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_3]]] : memref // CHECK-ON: %[[VAL_11:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_5]]] : memref // CHECK-ON: %[[VAL_12:.*]] = vector.insertelement %[[VAL_9]], %[[VAL_4]]{{\[}}%[[VAL_3]] : index] : vector<8xi32> // CHECK-ON: %[[VAL_13:.*]] = scf.for %[[VAL_14:.*]] = %[[VAL_10]] to %[[VAL_11]] step %[[VAL_2]] iter_args(%[[VAL_15:.*]] = %[[VAL_12]]) -> (vector<8xi32>) { // CHECK-ON: %[[VAL_16:.*]] = affine.min #map(%[[VAL_11]], %[[VAL_14]]){{\[}}%[[VAL_2]]] // CHECK-ON: %[[VAL_17:.*]] = vector.create_mask %[[VAL_16]] : vector<8xi1> // CHECK-ON: %[[VAL_18:.*]] = vector.maskedload %[[VAL_7]]{{\[}}%[[VAL_14]]], %[[VAL_17]], %[[VAL_4]] : memref, vector<8xi1>, vector<8xi32> into vector<8xi32> // CHECK-ON: %[[VAL_19:.*]] = arith.subi %[[VAL_15]], %[[VAL_18]] : vector<8xi32> // CHECK-ON: %[[VAL_20:.*]] = arith.select %[[VAL_17]], %[[VAL_19]], %[[VAL_15]] : vector<8xi1>, vector<8xi32> // CHECK-ON: scf.yield %[[VAL_20]] : vector<8xi32> // CHECK-ON: } {"Emitted from" = "linalg.generic"} // CHECK-ON: %[[VAL_21:.*]] = vector.reduction , %[[VAL_22:.*]] : vector<8xi32> into i32 // CHECK-ON: memref.store %[[VAL_21]], %[[VAL_8]][] : memref // CHECK-ON: %[[VAL_23:.*]] = bufferization.to_tensor %[[VAL_8]] : memref // CHECK-ON: return %[[VAL_23]] : tensor // CHECK-ON: } // // CHECK-OFF-LABEL: func.func @sparse_reduction_subi( // CHECK-OFF-SAME: %[[VAL_0:.*]]: tensor, // CHECK-OFF-SAME: %[[VAL_1:.*]]: tensor) -> tensor { // CHECK-OFF-DAG: %[[VAL_2:.*]] = arith.constant 0 : index // CHECK-OFF-DAG: %[[VAL_3:.*]] = arith.constant 1 : index // CHECK-OFF: %[[VAL_4:.*]] = sparse_tensor.positions %[[VAL_1]] {level = 0 : index} : tensor to memref // CHECK-OFF: %[[VAL_5:.*]] = sparse_tensor.values %[[VAL_1]] : tensor to memref // CHECK-OFF: %[[VAL_6:.*]] = bufferization.to_memref %[[VAL_0]] : memref // CHECK-OFF: %[[VAL_7:.*]] = memref.load %[[VAL_6]][] : memref // CHECK-OFF: %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref // CHECK-OFF: %[[VAL_9:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_3]]] : memref // CHECK-OFF: %[[VAL_10:.*]] = scf.for %[[VAL_11:.*]] = %[[VAL_8]] to %[[VAL_9]] step %[[VAL_3]] iter_args(%[[VAL_12:.*]] = %[[VAL_7]]) -> (i32) { // CHECK-OFF: %[[VAL_13:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_11]]] : memref // CHECK-OFF: %[[VAL_14:.*]] = arith.subi %[[VAL_12]], %[[VAL_13]] : i32 // CHECK-OFF: scf.yield %[[VAL_14]] : i32 // CHECK-OFF: } {"Emitted from" = "linalg.generic"} // CHECK-OFF: memref.store %[[VAL_15:.*]], %[[VAL_6]][] : memref // CHECK-OFF: %[[VAL_16:.*]] = bufferization.to_tensor %[[VAL_6]] : memref // CHECK-OFF: return %[[VAL_16]] : tensor // CHECK-OFF: } #SparseVector = #sparse_tensor.encoding<{map = (d0) -> (d0 : compressed)}> #trait = { indexing_maps = [ affine_map<(i) -> (i)>, // a (in) affine_map<(i) -> ()> // x (out) ], iterator_types = ["reduction"] } func.func @sparse_reduction_subi(%argx: tensor, %arga: tensor) -> tensor { %0 = linalg.generic #trait ins(%arga: tensor) outs(%argx: tensor) { ^bb(%a: i32, %x: i32): %t = arith.subi %x, %a: i32 linalg.yield %t : i32 } -> tensor return %0 : tensor } // ----- // Check that we vectorize reductions with xor. // CHECK-ON-LABEL: func.func @sparse_reduction_xor( // CHECK-ON-SAME: %[[VAL_0:.*]]: tensor, // CHECK-ON-SAME: %[[VAL_1:.*]]: tensor) -> tensor { // CHECK-ON-DAG: %[[VAL_2:.*]] = arith.constant 8 : index // CHECK-ON-DAG: %[[VAL_3:.*]] = arith.constant dense<0> : vector<8xi32> // CHECK-ON-DAG: %[[VAL_4:.*]] = arith.constant 0 : index // CHECK-ON-DAG: %[[VAL_5:.*]] = arith.constant 1 : index // CHECK-ON: %[[VAL_6:.*]] = sparse_tensor.positions %[[VAL_1]] {level = 0 : index} : tensor to memref // CHECK-ON: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_1]] : tensor to memref // CHECK-ON: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_0]] : memref // CHECK-ON: %[[VAL_9:.*]] = memref.load %[[VAL_8]][] : memref // CHECK-ON: %[[VAL_10:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_4]]] : memref // CHECK-ON: %[[VAL_11:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_5]]] : memref // CHECK-ON: %[[VAL_12:.*]] = vector.insertelement %[[VAL_9]], %[[VAL_3]]{{\[}}%[[VAL_4]] : index] : vector<8xi32> // CHECK-ON: %[[VAL_13:.*]] = scf.for %[[VAL_14:.*]] = %[[VAL_10]] to %[[VAL_11]] step %[[VAL_2]] iter_args(%[[VAL_15:.*]] = %[[VAL_12]]) -> (vector<8xi32>) { // CHECK-ON: %[[VAL_16:.*]] = affine.min #map(%[[VAL_11]], %[[VAL_14]]){{\[}}%[[VAL_2]]] // CHECK-ON: %[[VAL_17:.*]] = vector.create_mask %[[VAL_16]] : vector<8xi1> // CHECK-ON: %[[VAL_18:.*]] = vector.maskedload %[[VAL_7]]{{\[}}%[[VAL_14]]], %[[VAL_17]], %[[VAL_3]] : memref, vector<8xi1>, vector<8xi32> into vector<8xi32> // CHECK-ON: %[[VAL_19:.*]] = arith.xori %[[VAL_15]], %[[VAL_18]] : vector<8xi32> // CHECK-ON: %[[VAL_20:.*]] = arith.select %[[VAL_17]], %[[VAL_19]], %[[VAL_15]] : vector<8xi1>, vector<8xi32> // CHECK-ON: scf.yield %[[VAL_20]] : vector<8xi32> // CHECK-ON: } {"Emitted from" = "linalg.generic"} // CHECK-ON: %[[VAL_21:.*]] = vector.reduction , %[[VAL_22:.*]] : vector<8xi32> into i32 // CHECK-ON: memref.store %[[VAL_21]], %[[VAL_8]][] : memref // CHECK-ON: %[[VAL_23:.*]] = bufferization.to_tensor %[[VAL_8]] : memref // CHECK-ON: return %[[VAL_23]] : tensor // CHECK-ON: } // // CHECK-OFF-LABEL: func.func @sparse_reduction_xor( // CHECK-OFF-SAME: %[[VAL_0:.*]]: tensor, // CHECK-OFF-SAME: %[[VAL_1:.*]]: tensor) -> tensor { // CHECK-OFF-DAG: %[[VAL_2:.*]] = arith.constant 0 : index // CHECK-OFF-DAG: %[[VAL_3:.*]] = arith.constant 1 : index // CHECK-OFF: %[[VAL_4:.*]] = sparse_tensor.positions %[[VAL_1]] {level = 0 : index} : tensor to memref // CHECK-OFF: %[[VAL_5:.*]] = sparse_tensor.values %[[VAL_1]] : tensor to memref // CHECK-OFF: %[[VAL_6:.*]] = bufferization.to_memref %[[VAL_0]] : memref // CHECK-OFF: %[[VAL_7:.*]] = memref.load %[[VAL_6]][] : memref // CHECK-OFF: %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref // CHECK-OFF: %[[VAL_9:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_3]]] : memref // CHECK-OFF: %[[VAL_10:.*]] = scf.for %[[VAL_11:.*]] = %[[VAL_8]] to %[[VAL_9]] step %[[VAL_3]] iter_args(%[[VAL_12:.*]] = %[[VAL_7]]) -> (i32) { // CHECK-OFF: %[[VAL_13:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_11]]] : memref // CHECK-OFF: %[[VAL_14:.*]] = arith.xori %[[VAL_12]], %[[VAL_13]] : i32 // CHECK-OFF: scf.yield %[[VAL_14]] : i32 // CHECK-OFF: } {"Emitted from" = "linalg.generic"} // CHECK-OFF: memref.store %[[VAL_15:.*]], %[[VAL_6]][] : memref // CHECK-OFF: %[[VAL_16:.*]] = bufferization.to_tensor %[[VAL_6]] : memref // CHECK-OFF: return %[[VAL_16]] : tensor // CHECK-OFF: } #SparseVector = #sparse_tensor.encoding<{map = (d0) -> (d0 : compressed)}> #trait = { indexing_maps = [ affine_map<(i) -> (i)>, // a (in) affine_map<(i) -> ()> // x (out) ], iterator_types = ["reduction"] } func.func @sparse_reduction_xor(%argx: tensor, %arga: tensor) -> tensor { %0 = linalg.generic #trait ins(%arga: tensor) outs(%argx: tensor) { ^bb(%a: i32, %x: i32): %t = arith.xori %x, %a: i32 linalg.yield %t : i32 } -> tensor return %0 : tensor } // ----- // Check that we vectorize reductions with addi. // CHECK-ON-LABEL: func.func @sparse_reduction_addi( // CHECK-ON-SAME: %[[VAL_0:.*]]: tensor, // CHECK-ON-SAME: %[[VAL_1:.*]]: tensor) -> tensor { // CHECK-ON-DAG: %[[VAL_2:.*]] = arith.constant 8 : index // CHECK-ON-DAG: %[[VAL_3:.*]] = arith.constant dense<0> : vector<8xi32> // CHECK-ON-DAG: %[[VAL_4:.*]] = arith.constant 0 : index // CHECK-ON-DAG: %[[VAL_5:.*]] = arith.constant 1 : index // CHECK-ON: %[[VAL_6:.*]] = sparse_tensor.positions %[[VAL_1]] {level = 0 : index} : tensor to memref // CHECK-ON: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_1]] : tensor to memref // CHECK-ON: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_0]] : memref // CHECK-ON: %[[VAL_9:.*]] = memref.load %[[VAL_8]][] : memref // CHECK-ON: %[[VAL_10:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_4]]] : memref // CHECK-ON: %[[VAL_11:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_5]]] : memref // CHECK-ON: %[[VAL_12:.*]] = vector.insertelement %[[VAL_9]], %[[VAL_3]]{{\[}}%[[VAL_4]] : index] : vector<8xi32> // CHECK-ON: %[[VAL_13:.*]] = scf.for %[[VAL_14:.*]] = %[[VAL_10]] to %[[VAL_11]] step %[[VAL_2]] iter_args(%[[VAL_15:.*]] = %[[VAL_12]]) -> (vector<8xi32>) { // CHECK-ON: %[[VAL_16:.*]] = affine.min #map(%[[VAL_11]], %[[VAL_14]]){{\[}}%[[VAL_2]]] // CHECK-ON: %[[VAL_17:.*]] = vector.create_mask %[[VAL_16]] : vector<8xi1> // CHECK-ON: %[[VAL_18:.*]] = vector.maskedload %[[VAL_7]]{{\[}}%[[VAL_14]]], %[[VAL_17]], %[[VAL_3]] : memref, vector<8xi1>, vector<8xi32> into vector<8xi32> // CHECK-ON: %[[VAL_19:.*]] = arith.addi %[[VAL_15]], %[[VAL_18]] : vector<8xi32> // CHECK-ON: %[[VAL_20:.*]] = arith.select %[[VAL_17]], %[[VAL_19]], %[[VAL_15]] : vector<8xi1>, vector<8xi32> // CHECK-ON: scf.yield %[[VAL_20]] : vector<8xi32> // CHECK-ON: } {"Emitted from" = "linalg.generic"} // CHECK-ON: %[[VAL_21:.*]] = vector.reduction , %[[VAL_22:.*]] : vector<8xi32> into i32 // CHECK-ON: memref.store %[[VAL_21]], %[[VAL_8]][] : memref // CHECK-ON: %[[VAL_23:.*]] = bufferization.to_tensor %[[VAL_8]] : memref // CHECK-ON: return %[[VAL_23]] : tensor // CHECK-ON: } // // CHECK-OFF-LABEL: func.func @sparse_reduction_addi( // CHECK-OFF-SAME: %[[VAL_0:.*]]: tensor, // CHECK-OFF-SAME: %[[VAL_1:.*]]: tensor) -> tensor { // CHECK-OFF-DAG: %[[VAL_2:.*]] = arith.constant 0 : index // CHECK-OFF-DAG: %[[VAL_3:.*]] = arith.constant 1 : index // CHECK-OFF: %[[VAL_4:.*]] = sparse_tensor.positions %[[VAL_1]] {level = 0 : index} : tensor to memref // CHECK-OFF: %[[VAL_5:.*]] = sparse_tensor.values %[[VAL_1]] : tensor to memref // CHECK-OFF: %[[VAL_6:.*]] = bufferization.to_memref %[[VAL_0]] : memref // CHECK-OFF: %[[VAL_7:.*]] = memref.load %[[VAL_6]][] : memref // CHECK-OFF: %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref // CHECK-OFF: %[[VAL_9:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_3]]] : memref // CHECK-OFF: %[[VAL_10:.*]] = scf.for %[[VAL_11:.*]] = %[[VAL_8]] to %[[VAL_9]] step %[[VAL_3]] iter_args(%[[VAL_12:.*]] = %[[VAL_7]]) -> (i32) { // CHECK-OFF: %[[VAL_13:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_11]]] : memref // CHECK-OFF: %[[VAL_14:.*]] = arith.addi %[[VAL_12]], %[[VAL_13]] : i32 // CHECK-OFF: scf.yield %[[VAL_14]] : i32 // CHECK-OFF: } {"Emitted from" = "linalg.generic"} // CHECK-OFF: memref.store %[[VAL_15:.*]], %[[VAL_6]][] : memref // CHECK-OFF: %[[VAL_16:.*]] = bufferization.to_tensor %[[VAL_6]] : memref // CHECK-OFF: return %[[VAL_16]] : tensor // CHECK-OFF: } #SparseVector = #sparse_tensor.encoding<{map = (d0) -> (d0 : compressed)}> #trait = { indexing_maps = [ affine_map<(i) -> (i)>, // a (in) affine_map<(i) -> ()> // x (out) ], iterator_types = ["reduction"] } func.func @sparse_reduction_addi(%argx: tensor, %arga: tensor) -> tensor { %0 = linalg.generic #trait ins(%arga: tensor) outs(%argx: tensor) { ^bb(%a: i32, %x: i32): %t = arith.addi %x, %a: i32 linalg.yield %t : i32 } -> tensor return %0 : tensor } // ----- // Check that we vectorize reductions with subf. // CHECK-ON-LABEL: func.func @sparse_reduction_subf( // CHECK-ON-SAME: %[[VAL_0:.*]]: tensor, // CHECK-ON-SAME: %[[VAL_1:.*]]: tensor) -> tensor { // CHECK-ON-DAG: %[[VAL_2:.*]] = arith.constant 8 : index // CHECK-ON-DAG: %[[VAL_3:.*]] = arith.constant dense<0.000000e+00> : vector<8xf32> // CHECK-ON-DAG: %[[VAL_4:.*]] = arith.constant 0 : index // CHECK-ON-DAG: %[[VAL_5:.*]] = arith.constant 1 : index // CHECK-ON: %[[VAL_6:.*]] = sparse_tensor.positions %[[VAL_1]] {level = 0 : index} : tensor to memref // CHECK-ON: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_1]] : tensor to memref // CHECK-ON: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_0]] : memref // CHECK-ON: %[[VAL_9:.*]] = memref.load %[[VAL_8]][] : memref // CHECK-ON: %[[VAL_10:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_4]]] : memref // CHECK-ON: %[[VAL_11:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_5]]] : memref // CHECK-ON: %[[VAL_12:.*]] = vector.insertelement %[[VAL_9]], %[[VAL_3]]{{\[}}%[[VAL_4]] : index] : vector<8xf32> // CHECK-ON: %[[VAL_13:.*]] = scf.for %[[VAL_14:.*]] = %[[VAL_10]] to %[[VAL_11]] step %[[VAL_2]] iter_args(%[[VAL_15:.*]] = %[[VAL_12]]) -> (vector<8xf32>) { // CHECK-ON: %[[VAL_16:.*]] = affine.min #map(%[[VAL_11]], %[[VAL_14]]){{\[}}%[[VAL_2]]] // CHECK-ON: %[[VAL_17:.*]] = vector.create_mask %[[VAL_16]] : vector<8xi1> // CHECK-ON: %[[VAL_18:.*]] = vector.maskedload %[[VAL_7]]{{\[}}%[[VAL_14]]], %[[VAL_17]], %[[VAL_3]] : memref, vector<8xi1>, vector<8xf32> into vector<8xf32> // CHECK-ON: %[[VAL_19:.*]] = arith.subf %[[VAL_15]], %[[VAL_18]] : vector<8xf32> // CHECK-ON: %[[VAL_20:.*]] = arith.select %[[VAL_17]], %[[VAL_19]], %[[VAL_15]] : vector<8xi1>, vector<8xf32> // CHECK-ON: scf.yield %[[VAL_20]] : vector<8xf32> // CHECK-ON: } {"Emitted from" = "linalg.generic"} // CHECK-ON: %[[VAL_21:.*]] = vector.reduction , %[[VAL_22:.*]] : vector<8xf32> into f32 // CHECK-ON: memref.store %[[VAL_21]], %[[VAL_8]][] : memref // CHECK-ON: %[[VAL_23:.*]] = bufferization.to_tensor %[[VAL_8]] : memref // CHECK-ON: return %[[VAL_23]] : tensor // CHECK-ON: } // // CHECK-OFF-LABEL: func.func @sparse_reduction_subf( // CHECK-OFF-SAME: %[[VAL_0:.*]]: tensor, // CHECK-OFF-SAME: %[[VAL_1:.*]]: tensor) -> tensor { // CHECK-OFF-DAG: %[[VAL_2:.*]] = arith.constant 0 : index // CHECK-OFF-DAG: %[[VAL_3:.*]] = arith.constant 1 : index // CHECK-OFF: %[[VAL_4:.*]] = sparse_tensor.positions %[[VAL_1]] {level = 0 : index} : tensor to memref // CHECK-OFF: %[[VAL_5:.*]] = sparse_tensor.values %[[VAL_1]] : tensor to memref // CHECK-OFF: %[[VAL_6:.*]] = bufferization.to_memref %[[VAL_0]] : memref // CHECK-OFF: %[[VAL_7:.*]] = memref.load %[[VAL_6]][] : memref // CHECK-OFF: %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref // CHECK-OFF: %[[VAL_9:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_3]]] : memref // CHECK-OFF: %[[VAL_10:.*]] = scf.for %[[VAL_11:.*]] = %[[VAL_8]] to %[[VAL_9]] step %[[VAL_3]] iter_args(%[[VAL_12:.*]] = %[[VAL_7]]) -> (f32) { // CHECK-OFF: %[[VAL_13:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_11]]] : memref // CHECK-OFF: %[[VAL_14:.*]] = arith.subf %[[VAL_12]], %[[VAL_13]] : f32 // CHECK-OFF: scf.yield %[[VAL_14]] : f32 // CHECK-OFF: } {"Emitted from" = "linalg.generic"} // CHECK-OFF: memref.store %[[VAL_15:.*]], %[[VAL_6]][] : memref // CHECK-OFF: %[[VAL_16:.*]] = bufferization.to_tensor %[[VAL_6]] : memref // CHECK-OFF: return %[[VAL_16]] : tensor // CHECK-OFF: } #SparseVector = #sparse_tensor.encoding<{map = (d0) -> (d0 : compressed)}> #trait = { indexing_maps = [ affine_map<(i) -> (i)>, // a (in) affine_map<(i) -> ()> // x (out) ], iterator_types = ["reduction"] } func.func @sparse_reduction_subf(%argx: tensor, %arga: tensor) -> tensor { %0 = linalg.generic #trait ins(%arga: tensor) outs(%argx: tensor) { ^bb(%a: f32, %x: f32): %t = arith.subf %x, %a: f32 linalg.yield %t : f32 } -> tensor return %0 : tensor } // ----- // Check that we vectorize reductions with addf. // CHECK-ON-LABEL: func.func @sparse_reduction_addf( // CHECK-ON-SAME: %[[VAL_0:.*]]: tensor, // CHECK-ON-SAME: %[[VAL_1:.*]]: tensor) -> tensor { // CHECK-ON-DAG: %[[VAL_2:.*]] = arith.constant 8 : index // CHECK-ON-DAG: %[[VAL_3:.*]] = arith.constant dense<0.000000e+00> : vector<8xf32> // CHECK-ON-DAG: %[[VAL_4:.*]] = arith.constant 0 : index // CHECK-ON-DAG: %[[VAL_5:.*]] = arith.constant 1 : index // CHECK-ON: %[[VAL_6:.*]] = sparse_tensor.positions %[[VAL_1]] {level = 0 : index} : tensor to memref // CHECK-ON: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_1]] : tensor to memref // CHECK-ON: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_0]] : memref // CHECK-ON: %[[VAL_9:.*]] = memref.load %[[VAL_8]][] : memref // CHECK-ON: %[[VAL_10:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_4]]] : memref // CHECK-ON: %[[VAL_11:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_5]]] : memref // CHECK-ON: %[[VAL_12:.*]] = vector.insertelement %[[VAL_9]], %[[VAL_3]]{{\[}}%[[VAL_4]] : index] : vector<8xf32> // CHECK-ON: %[[VAL_13:.*]] = scf.for %[[VAL_14:.*]] = %[[VAL_10]] to %[[VAL_11]] step %[[VAL_2]] iter_args(%[[VAL_15:.*]] = %[[VAL_12]]) -> (vector<8xf32>) { // CHECK-ON: %[[VAL_16:.*]] = affine.min #map(%[[VAL_11]], %[[VAL_14]]){{\[}}%[[VAL_2]]] // CHECK-ON: %[[VAL_17:.*]] = vector.create_mask %[[VAL_16]] : vector<8xi1> // CHECK-ON: %[[VAL_18:.*]] = vector.maskedload %[[VAL_7]]{{\[}}%[[VAL_14]]], %[[VAL_17]], %[[VAL_3]] : memref, vector<8xi1>, vector<8xf32> into vector<8xf32> // CHECK-ON: %[[VAL_19:.*]] = arith.addf %[[VAL_15]], %[[VAL_18]] : vector<8xf32> // CHECK-ON: %[[VAL_20:.*]] = arith.select %[[VAL_17]], %[[VAL_19]], %[[VAL_15]] : vector<8xi1>, vector<8xf32> // CHECK-ON: scf.yield %[[VAL_20]] : vector<8xf32> // CHECK-ON: } {"Emitted from" = "linalg.generic"} // CHECK-ON: %[[VAL_21:.*]] = vector.reduction , %[[VAL_22:.*]] : vector<8xf32> into f32 // CHECK-ON: memref.store %[[VAL_21]], %[[VAL_8]][] : memref // CHECK-ON: %[[VAL_23:.*]] = bufferization.to_tensor %[[VAL_8]] : memref // CHECK-ON: return %[[VAL_23]] : tensor // CHECK-ON: } // // CHECK-OFF-LABEL: func.func @sparse_reduction_addf( // CHECK-OFF-SAME: %[[VAL_0:.*]]: tensor, // CHECK-OFF-SAME: %[[VAL_1:.*]]: tensor) -> tensor { // CHECK-OFF-DAG: %[[VAL_2:.*]] = arith.constant 0 : index // CHECK-OFF-DAG: %[[VAL_3:.*]] = arith.constant 1 : index // CHECK-OFF: %[[VAL_4:.*]] = sparse_tensor.positions %[[VAL_1]] {level = 0 : index} : tensor to memref // CHECK-OFF: %[[VAL_5:.*]] = sparse_tensor.values %[[VAL_1]] : tensor to memref // CHECK-OFF: %[[VAL_6:.*]] = bufferization.to_memref %[[VAL_0]] : memref // CHECK-OFF: %[[VAL_7:.*]] = memref.load %[[VAL_6]][] : memref // CHECK-OFF: %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref // CHECK-OFF: %[[VAL_9:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_3]]] : memref // CHECK-OFF: %[[VAL_10:.*]] = scf.for %[[VAL_11:.*]] = %[[VAL_8]] to %[[VAL_9]] step %[[VAL_3]] iter_args(%[[VAL_12:.*]] = %[[VAL_7]]) -> (f32) { // CHECK-OFF: %[[VAL_13:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_11]]] : memref // CHECK-OFF: %[[VAL_14:.*]] = arith.addf %[[VAL_12]], %[[VAL_13]] : f32 // CHECK-OFF: scf.yield %[[VAL_14]] : f32 // CHECK-OFF: } {"Emitted from" = "linalg.generic"} // CHECK-OFF: memref.store %[[VAL_15:.*]], %[[VAL_6]][] : memref // CHECK-OFF: %[[VAL_16:.*]] = bufferization.to_tensor %[[VAL_6]] : memref // CHECK-OFF: return %[[VAL_16]] : tensor // CHECK-OFF: } #SparseVector = #sparse_tensor.encoding<{map = (d0) -> (d0 : compressed)}> #trait = { indexing_maps = [ affine_map<(i) -> (i)>, // a (in) affine_map<(i) -> ()> // x (out) ], iterator_types = ["reduction"] } func.func @sparse_reduction_addf(%argx: tensor, %arga: tensor) -> tensor { %0 = linalg.generic #trait ins(%arga: tensor) outs(%argx: tensor) { ^bb(%a: f32, %x: f32): %t = arith.addf %x, %a: f32 linalg.yield %t : f32 } -> tensor return %0 : tensor }