//-------------------------------------------------------------------------------------------------- // WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS. // // Set-up that's shared across all tests in this directory. In principle, this // config could be moved to lit.local.cfg. However, there are downstream users that // do not use these LIT config files. Hence why this is kept inline. // // DEFINE: %{sparsifier_opts} = enable-runtime-library=true // DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts} // DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}" // DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}" // DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils // DEFINE: %{run_opts} = -e main -entry-point-result=void // DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs} // DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs} // // DEFINE: %{env} = //-------------------------------------------------------------------------------------------------- // REDEFINE: %{env} = TENSOR0="%mlir_src_dir/test/Integration/data/block.mtx" // RUN: %{compile} | env %{env} %{run} | FileCheck %s // // Do the same run, but now with direct IR generation. // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false // RUN: %{compile} | env %{env} %{run} | FileCheck %s // // Do the same run, but now with direct IR generation and vectorization. // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true vl=2 reassociate-fp-reductions=true enable-index-optimizations=true // RUN: %{compile} | env %{env} %{run} | FileCheck %s !Filename = !llvm.ptr #BSR = #sparse_tensor.encoding<{ map = (i, j) -> ( i floordiv 2 : dense , j floordiv 2 : compressed , i mod 2 : dense , j mod 2 : dense ) }> #DSDD = #sparse_tensor.encoding<{ map = (i, j, k, l) -> ( i : dense, j : compressed, k : dense, l : dense) }> #trait_scale_inplace = { indexing_maps = [ affine_map<(i,j) -> (i,j)> // X (out) ], iterator_types = ["parallel", "parallel"] } // // Example 2x2 block storage: // // +-----+-----+-----+ +-----+-----+-----+ // | 1 2 | . . | 4 . | | 1 2 | | 4 0 | // | . 3 | . . | . 5 | | 0 3 | | 0 5 | // +-----+-----+-----+ => +-----+-----+-----+ // | . . | 6 7 | . . | | | 6 7 | | // | . . | 8 . | . . | | | 8 0 | | // +-----+-----+-----+ +-----+-----+-----+ // // Stored as: // // positions[1] : 0 2 3 // coordinates[1] : 0 2 1 // values : 1.000000 2.000000 0.000000 3.000000 4.000000 0.000000 0.000000 5.000000 6.000000 7.000000 8.000000 0.000000 // module { func.func private @getTensorFilename(index) -> (!Filename) func.func @scale(%arg0: tensor) -> tensor { %c = arith.constant 3.0 : f64 %0 = linalg.generic #trait_scale_inplace outs(%arg0: tensor) { ^bb(%x: f64): %1 = arith.mulf %x, %c : f64 linalg.yield %1 : f64 } -> tensor return %0 : tensor } func.func @main() { %c0 = arith.constant 0 : index %f0 = arith.constant 0.0 : f64 %fileName = call @getTensorFilename(%c0) : (index) -> (!Filename) %A = sparse_tensor.new %fileName : !Filename to tensor // CHECK: ---- Sparse Tensor ---- // CHECK-NEXT: nse = 12 // CHECK-NEXT: dim = ( 4, 6 ) // CHECK-NEXT: lvl = ( 2, 3, 2, 2 ) // CHECK-NEXT: pos[1] : ( 0, 2, 3, // CHECK-NEXT: crd[1] : ( 0, 2, 1, // CHECK-NEXT: values : ( 1, 2, 0, 3, 4, 0, 0, 5, 6, 7, 8, 0, // CHECK-NEXT: ---- sparse_tensor.print %A : tensor // CHECK-NEXT: ---- Sparse Tensor ---- // CHECK-NEXT: nse = 12 // CHECK-NEXT: dim = ( 2, 3, 2, 2 ) // CHECK-NEXT: lvl = ( 2, 3, 2, 2 ) // CHECK-NEXT: pos[1] : ( 0, 2, 3, // CHECK-NEXT: crd[1] : ( 0, 2, 1 // CHECK-NEXT: values : ( 1, 2, 0, 3, 4, 0, 0, 5, 6, 7, 8, 0, // CHECK-NEXT: ---- %t1 = sparse_tensor.reinterpret_map %A : tensor to tensor sparse_tensor.print %t1 : tensor // CHECK-NEXT: ---- Sparse Tensor ---- // CHECK-NEXT: nse = 12 // CHECK-NEXT: dim = ( 4, 6 ) // CHECK-NEXT: lvl = ( 2, 3, 2, 2 ) // CHECK-NEXT: pos[1] : ( 0, 2, 3, // CHECK-NEXT: crd[1] : ( 0, 2, 1, // CHECK-NEXT: values : ( 3, 6, 0, 9, 12, 0, 0, 15, 18, 21, 24, 0, // CHECK-NEXT: ---- %As = call @scale(%A) : (tensor) -> (tensor) sparse_tensor.print %As : tensor // Release the resources. bufferization.dealloc_tensor %A: tensor return } }