//-------------------------------------------------------------------------------------------------- // WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS. // // Set-up that's shared across all tests in this directory. In principle, this // config could be moved to lit.local.cfg. However, there are downstream users that // do not use these LIT config files. Hence why this is kept inline. // // DEFINE: %{sparsifier_opts} = enable-runtime-library=true // DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts} // DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}" // DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}" // DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils // DEFINE: %{run_opts} = -e main -entry-point-result=void // DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs} // DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs} // // DEFINE: %{env} = //-------------------------------------------------------------------------------------------------- // REDEFINE: %{env} = TENSOR0="%mlir_src_dir/test/Integration/data/test.mtx" // RUN: %{compile} | env %{env} %{run} | FileCheck %s // // Do the same run, but now with direct IR generation. // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false // RUN: %{compile} | env %{env} %{run} | FileCheck %s // // Do the same run, but now with direct IR generation and vectorization. // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true // RUN: %{compile} | env %{env} %{run} | FileCheck %s // // Do the same run, but now with direct IR generation and VLA vectorization. // RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | env %{env} %{run_sve} | FileCheck %s %} !Filename = !llvm.ptr #DenseMatrix = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : dense) }> #SparseMatrix = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed), }> #trait_assign = { indexing_maps = [ affine_map<(i,j) -> (i,j)>, // A affine_map<(i,j) -> (i,j)> // X (out) ], iterator_types = ["parallel", "parallel"], doc = "X(i,j) = A(i,j) * 2" } // // Integration test that demonstrates assigning a sparse tensor // to an all-dense annotated "sparse" tensor, which effectively // result in inserting the nonzero elements into a linearized array. // // Note that there is a subtle difference between a non-annotated // tensor and an all-dense annotated tensor. Both tensors are assumed // dense, but the former remains an n-dimensional memref whereas the // latter is linearized into a one-dimensional memref that is further // lowered into a storage scheme that is backed by the runtime support // library. module { // // A kernel that assigns multiplied elements from A to X. // func.func @dense_output(%arga: tensor) -> tensor { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %c2 = arith.constant 2.0 : f64 %d0 = tensor.dim %arga, %c0 : tensor %d1 = tensor.dim %arga, %c1 : tensor %init = tensor.empty(%d0, %d1) : tensor %0 = linalg.generic #trait_assign ins(%arga: tensor) outs(%init: tensor) { ^bb(%a: f64, %x: f64): %0 = arith.mulf %a, %c2 : f64 linalg.yield %0 : f64 } -> tensor return %0 : tensor } func.func private @getTensorFilename(index) -> (!Filename) // // Main driver that reads matrix from file and calls the kernel. // func.func @main() { %d0 = arith.constant 0.0 : f64 %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index // Read the sparse matrix from file, construct sparse storage. %fileName = call @getTensorFilename(%c0) : (index) -> (!Filename) %a = sparse_tensor.new %fileName : !Filename to tensor // Call the kernel. %0 = call @dense_output(%a) : (tensor) -> tensor // // Print the linearized 5x5 result for verification. // // CHECK: ---- Sparse Tensor ---- // CHECK-NEXT: nse = 25 // CHECK-NEXT: dim = ( 5, 5 ) // CHECK-NEXT: lvl = ( 5, 5 ) // CHECK-NEXT: values : ( 2, 0, 0, 2.8, 0, 0, 4, 0, 0, 5, 0, 0, 6, 0, 0, 8.2, 0, 0, 8, 0, 0, 10.4, 0, 0, 10, // CHECK-NEXT: ---- // sparse_tensor.print %0 : tensor // Release the resources. bufferization.dealloc_tensor %a : tensor bufferization.dealloc_tensor %0 : tensor return } }