//-------------------------------------------------------------------------------------------------- // WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS. // // Set-up that's shared across all tests in this directory. In principle, this // config could be moved to lit.local.cfg. However, there are downstream users that // do not use these LIT config files. Hence why this is kept inline. // // DEFINE: %{sparsifier_opts} = enable-runtime-library=true // DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts} // DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}" // DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}" // DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils // DEFINE: %{run_opts} = -e main -entry-point-result=void // DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs} // DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs} // // DEFINE: %{env} = //-------------------------------------------------------------------------------------------------- // RUN: %{compile} | %{run} | FileCheck %s // // Do the same run, but now with direct IR generation. // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true // RUN: %{compile} | %{run} | FileCheck %s // // Do the same run, but now with direct IR generation and vectorization. // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true vl=2 reassociate-fp-reductions=true enable-index-optimizations=true // RUN: %{compile} | %{run} | FileCheck %s // // Do the same run, but now with direct IR generation and VLA vectorization. // RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %} #Sparse1 = #sparse_tensor.encoding<{ map = (i, j, k) -> ( j : compressed, k : compressed, i : dense ) }> #Sparse2 = #sparse_tensor.encoding<{ map = (i, j, k) -> ( i floordiv 2 : compressed, j floordiv 2 : compressed, k floordiv 2 : compressed, i mod 2 : dense, j mod 2 : dense, k mod 2 : dense) }> module { // // Main driver that tests sparse tensor storage. // func.func @main() { %c0 = arith.constant 0 : index %i0 = arith.constant 0 : i32 // Setup input dense tensor and convert to two sparse tensors. %d = arith.constant dense <[ [ // i=0 [ 1, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 5, 0 ] ], [ // i=1 [ 2, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 6, 0 ] ], [ //i=2 [ 3, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 7, 0 ] ], //i=3 [ [ 4, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 8, 0 ] ] ]> : tensor<4x4x4xi32> %a = sparse_tensor.convert %d : tensor<4x4x4xi32> to tensor<4x4x4xi32, #Sparse1> %b = sparse_tensor.convert %d : tensor<4x4x4xi32> to tensor<4x4x4xi32, #Sparse2> // // If we store the two "fibers" [1,2,3,4] starting at index (0,0,0) and // ending at index (3,0,0) and [5,6,7,8] starting at index (0,3,2) and // ending at index (3,3,2)) with a “DCSR-flavored” along (j,k) with // dense “fibers” in the i-dim, we end up with 8 stored entries. // // CHECK: ---- Sparse Tensor ---- // CHECK-NEXT: nse = 8 // CHECK-NEXT: dim = ( 4, 4, 4 ) // CHECK-NEXT: lvl = ( 4, 4, 4 ) // CHECK-NEXT: pos[0] : ( 0, 2 // CHECK-NEXT: crd[0] : ( 0, 3 // CHECK-NEXT: pos[1] : ( 0, 1, 2 // CHECK-NEXT: crd[1] : ( 0, 2 // CHECK-NEXT: values : ( 1, 2, 3, 4, 5, 6, 7, 8 // CHECK-NEXT: ---- // sparse_tensor.print %a : tensor<4x4x4xi32, #Sparse1> // // If we store full 2x2x2 3-D blocks in the original index order // in a compressed fashion, we end up with 4 blocks to incorporate // all the nonzeros, and thus 32 stored entries. // // CHECK: ---- Sparse Tensor ---- // CHECK-NEXT: nse = 32 // CHECK-NEXT: dim = ( 4, 4, 4 ) // CHECK-NEXT: lvl = ( 2, 2, 2, 2, 2, 2 ) // CHECK-NEXT: pos[0] : ( 0, 2 // CHECK-NEXT: crd[0] : ( 0, 1 // CHECK-NEXT: pos[1] : ( 0, 2, 4 // CHECK-NEXT: crd[1] : ( 0, 1, 0, 1 // CHECK-NEXT: pos[2] : ( 0, 1, 2, 3, 4 // CHECK-NEXT: crd[2] : ( 0, 1, 0, 1 // CHECK-NEXT: values : ( 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 5, 0, 0, 0, 6, 0, 3, 0, 0, 0, 4, 0, 0, 0, 0, 0, 7, 0, 0, 0, 8, 0 // CHECK-NEXT: ---- // sparse_tensor.print %b : tensor<4x4x4xi32, #Sparse2> // Release the resources. bufferization.dealloc_tensor %a : tensor<4x4x4xi32, #Sparse1> bufferization.dealloc_tensor %b : tensor<4x4x4xi32, #Sparse2> return } }