//-------------------------------------------------------------------------------------------------- // WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS. // // Set-up that's shared across all tests in this directory. In principle, this // config could be moved to lit.local.cfg. However, there are downstream users that // do not use these LIT config files. Hence why this is kept inline. // // DEFINE: %{sparsifier_opts} = enable-runtime-library=true // DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts} // DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}" // DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}" // DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils // DEFINE: %{run_opts} = -e main -entry-point-result=void // DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs} // DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs} // // DEFINE: %{env} = //-------------------------------------------------------------------------------------------------- // RUN: %{compile} | %{run} | FileCheck %s // // Do the same run, but now with direct IR generation. // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true // RUN: %{compile} | %{run} | FileCheck %s // // Do the same run, but now with direct IR generation and vectorization. // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true // RUN: %{compile} | %{run} | FileCheck %s // // Do the same run, but now with direct IR generation and VLA vectorization. // RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %} #SV = #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed) }> #trait_cast = { indexing_maps = [ affine_map<(i) -> (i)>, // A (in) affine_map<(i) -> (i)> // X (out) ], iterator_types = ["parallel"], doc = "X(i) = cast A(i)" } // // Integration test that lowers a kernel annotated as sparse to actual sparse // code, initializes a matching sparse storage scheme from a dense vector, // and runs the resulting code with the JIT compiler. // module { // // Various kernels that cast a sparse vector from one type to another. // Arithmetic supports the following casts. // sitofp // uitofp // fptosi // fptoui // extf // truncf // extsi // extui // trunci // bitcast // Since all casts are "zero preserving" unary operations, lattice computation // and conversion to sparse code is straightforward. // func.func @sparse_cast_s32_to_f32(%arga: tensor<10xi32, #SV>, %argb: tensor<10xf32>) -> tensor<10xf32> { %0 = linalg.generic #trait_cast ins(%arga: tensor<10xi32, #SV>) outs(%argb: tensor<10xf32>) { ^bb(%a: i32, %x : f32): %cst = arith.sitofp %a : i32 to f32 linalg.yield %cst : f32 } -> tensor<10xf32> return %0 : tensor<10xf32> } func.func @sparse_cast_u32_to_f32(%arga: tensor<10xi32, #SV>, %argb: tensor<10xf32>) -> tensor<10xf32> { %0 = linalg.generic #trait_cast ins(%arga: tensor<10xi32, #SV>) outs(%argb: tensor<10xf32>) { ^bb(%a: i32, %x : f32): %cst = arith.uitofp %a : i32 to f32 linalg.yield %cst : f32 } -> tensor<10xf32> return %0 : tensor<10xf32> } func.func @sparse_cast_f32_to_s32(%arga: tensor<10xf32, #SV>, %argb: tensor<10xi32>) -> tensor<10xi32> { %0 = linalg.generic #trait_cast ins(%arga: tensor<10xf32, #SV>) outs(%argb: tensor<10xi32>) { ^bb(%a: f32, %x : i32): %cst = arith.fptosi %a : f32 to i32 linalg.yield %cst : i32 } -> tensor<10xi32> return %0 : tensor<10xi32> } func.func @sparse_cast_f64_to_u32(%arga: tensor<10xf64, #SV>, %argb: tensor<10xi32>) -> tensor<10xi32> { %0 = linalg.generic #trait_cast ins(%arga: tensor<10xf64, #SV>) outs(%argb: tensor<10xi32>) { ^bb(%a: f64, %x : i32): %cst = arith.fptoui %a : f64 to i32 linalg.yield %cst : i32 } -> tensor<10xi32> return %0 : tensor<10xi32> } func.func @sparse_cast_f32_to_f64(%arga: tensor<10xf32, #SV>, %argb: tensor<10xf64>) -> tensor<10xf64> { %0 = linalg.generic #trait_cast ins(%arga: tensor<10xf32, #SV>) outs(%argb: tensor<10xf64>) { ^bb(%a: f32, %x : f64): %cst = arith.extf %a : f32 to f64 linalg.yield %cst : f64 } -> tensor<10xf64> return %0 : tensor<10xf64> } func.func @sparse_cast_f64_to_f32(%arga: tensor<10xf64, #SV>, %argb: tensor<10xf32>) -> tensor<10xf32> { %0 = linalg.generic #trait_cast ins(%arga: tensor<10xf64, #SV>) outs(%argb: tensor<10xf32>) { ^bb(%a: f64, %x : f32): %cst = arith.truncf %a : f64 to f32 linalg.yield %cst : f32 } -> tensor<10xf32> return %0 : tensor<10xf32> } func.func @sparse_cast_s32_to_u64(%arga: tensor<10xi32, #SV>, %argb: tensor<10xi64>) -> tensor<10xi64> { %0 = linalg.generic #trait_cast ins(%arga: tensor<10xi32, #SV>) outs(%argb: tensor<10xi64>) { ^bb(%a: i32, %x : i64): %cst = arith.extsi %a : i32 to i64 linalg.yield %cst : i64 } -> tensor<10xi64> return %0 : tensor<10xi64> } func.func @sparse_cast_u32_to_s64(%arga: tensor<10xi32, #SV>, %argb: tensor<10xi64>) -> tensor<10xi64> { %0 = linalg.generic #trait_cast ins(%arga: tensor<10xi32, #SV>) outs(%argb: tensor<10xi64>) { ^bb(%a: i32, %x : i64): %cst = arith.extui %a : i32 to i64 linalg.yield %cst : i64 } -> tensor<10xi64> return %0 : tensor<10xi64> } func.func @sparse_cast_i32_to_i8(%arga: tensor<10xi32, #SV>, %argb: tensor<10xi8>) -> tensor<10xi8> { %0 = linalg.generic #trait_cast ins(%arga: tensor<10xi32, #SV>) outs(%argb: tensor<10xi8>) { ^bb(%a: i32, %x : i8): %cst = arith.trunci %a : i32 to i8 linalg.yield %cst : i8 } -> tensor<10xi8> return %0 : tensor<10xi8> } func.func @sparse_cast_f32_as_s32(%arga: tensor<10xf32, #SV>, %argb: tensor<10xi32>) -> tensor<10xi32> { %0 = linalg.generic #trait_cast ins(%arga: tensor<10xf32, #SV>) outs(%argb: tensor<10xi32>) { ^bb(%a: f32, %x : i32): %cst = arith.bitcast %a : f32 to i32 linalg.yield %cst : i32 } -> tensor<10xi32> return %0 : tensor<10xi32> } // // Main driver that converts a dense tensor into a sparse tensor // and then calls the sparse casting kernel. // func.func @main() { %z = arith.constant 0 : index %b = arith.constant 0 : i8 %i = arith.constant 0 : i32 %l = arith.constant 0 : i64 %f = arith.constant 0.0 : f32 %d = arith.constant 0.0 : f64 %zero_b = arith.constant dense<0> : tensor<10xi8> %zero_d = arith.constant dense<0.0> : tensor<10xf64> %zero_f = arith.constant dense<0.0> : tensor<10xf32> %zero_i = arith.constant dense<0> : tensor<10xi32> %zero_l = arith.constant dense<0> : tensor<10xi64> // Initialize dense tensors, convert to a sparse vectors. %0 = arith.constant dense<[ -4, -3, -2, -1, 0, 1, 2, 3, 4, 305 ]> : tensor<10xi32> %1 = sparse_tensor.convert %0 : tensor<10xi32> to tensor<10xi32, #SV> %2 = arith.constant dense<[ -4.4, -3.3, -2.2, -1.1, 0.0, 1.1, 2.2, 3.3, 4.4, 305.5 ]> : tensor<10xf32> %3 = sparse_tensor.convert %2 : tensor<10xf32> to tensor<10xf32, #SV> %4 = arith.constant dense<[ -4.4, -3.3, -2.2, -1.1, 0.0, 1.1, 2.2, 3.3, 4.4, 305.5 ]> : tensor<10xf64> %5 = sparse_tensor.convert %4 : tensor<10xf64> to tensor<10xf64, #SV> %6 = arith.constant dense<[ 4294967295.0, 4294967294.0, 4294967293.0, 4294967292.0, 0.0, 1.1, 2.2, 3.3, 4.4, 305.5 ]> : tensor<10xf64> %7 = sparse_tensor.convert %6 : tensor<10xf64> to tensor<10xf64, #SV> // // CHECK: ( -4, -3, -2, -1, 0, 1, 2, 3, 4, 305 ) // %c0 = call @sparse_cast_s32_to_f32(%1, %zero_f) : (tensor<10xi32, #SV>, tensor<10xf32>) -> tensor<10xf32> %v0 = vector.transfer_read %c0[%z], %f: tensor<10xf32>, vector<10xf32> vector.print %v0 : vector<10xf32> // // CHECK: ( 4.29497e+09, 4.29497e+09, 4.29497e+09, 4.29497e+09, 0, 1, 2, 3, 4, 305 ) // %c1 = call @sparse_cast_u32_to_f32(%1, %zero_f) : (tensor<10xi32, #SV>, tensor<10xf32>) -> tensor<10xf32> %v1 = vector.transfer_read %c1[%z], %f: tensor<10xf32>, vector<10xf32> vector.print %v1 : vector<10xf32> // // CHECK: ( -4, -3, -2, -1, 0, 1, 2, 3, 4, 305 ) // %c2 = call @sparse_cast_f32_to_s32(%3, %zero_i) : (tensor<10xf32, #SV>, tensor<10xi32>) -> tensor<10xi32> %v2 = vector.transfer_read %c2[%z], %i: tensor<10xi32>, vector<10xi32> vector.print %v2 : vector<10xi32> // // CHECK: ( 4294967295, 4294967294, 4294967293, 4294967292, 0, 1, 2, 3, 4, 305 ) // %c3 = call @sparse_cast_f64_to_u32(%7, %zero_i) : (tensor<10xf64, #SV>, tensor<10xi32>) -> tensor<10xi32> %v3 = vector.transfer_read %c3[%z], %i: tensor<10xi32>, vector<10xi32> %vu = vector.bitcast %v3 : vector<10xi32> to vector<10xui32> vector.print %vu : vector<10xui32> // // CHECK: ( -4.4, -3.3, -2.2, -1.1, 0, 1.1, 2.2, 3.3, 4.4, 305.5 ) // %c4 = call @sparse_cast_f32_to_f64(%3, %zero_d) : (tensor<10xf32, #SV>, tensor<10xf64>) -> tensor<10xf64> %v4 = vector.transfer_read %c4[%z], %d: tensor<10xf64>, vector<10xf64> vector.print %v4 : vector<10xf64> // // CHECK: ( -4.4, -3.3, -2.2, -1.1, 0, 1.1, 2.2, 3.3, 4.4, 305.5 ) // %c5 = call @sparse_cast_f64_to_f32(%5, %zero_f) : (tensor<10xf64, #SV>, tensor<10xf32>) -> tensor<10xf32> %v5 = vector.transfer_read %c5[%z], %f: tensor<10xf32>, vector<10xf32> vector.print %v5 : vector<10xf32> // // CHECK: ( -4, -3, -2, -1, 0, 1, 2, 3, 4, 305 ) // %c6 = call @sparse_cast_s32_to_u64(%1, %zero_l) : (tensor<10xi32, #SV>, tensor<10xi64>) -> tensor<10xi64> %v6 = vector.transfer_read %c6[%z], %l: tensor<10xi64>, vector<10xi64> vector.print %v6 : vector<10xi64> // // CHECK: ( 4294967292, 4294967293, 4294967294, 4294967295, 0, 1, 2, 3, 4, 305 ) // %c7 = call @sparse_cast_u32_to_s64(%1, %zero_l) : (tensor<10xi32, #SV>, tensor<10xi64>) -> tensor<10xi64> %v7 = vector.transfer_read %c7[%z], %l: tensor<10xi64>, vector<10xi64> vector.print %v7 : vector<10xi64> // // CHECK: ( -4, -3, -2, -1, 0, 1, 2, 3, 4, 49 ) // %c8 = call @sparse_cast_i32_to_i8(%1, %zero_b) : (tensor<10xi32, #SV>, tensor<10xi8>) -> tensor<10xi8> %v8 = vector.transfer_read %c8[%z], %b: tensor<10xi8>, vector<10xi8> vector.print %v8 : vector<10xi8> // // CHECK: ( -1064514355, -1068289229, -1072902963, -1081291571, 0, 1066192077, 1074580685, 1079194419, 1082969293, 1134084096 ) // %c9 = call @sparse_cast_f32_as_s32(%3, %zero_i) : (tensor<10xf32, #SV>, tensor<10xi32>) -> tensor<10xi32> %v9 = vector.transfer_read %c9[%z], %i: tensor<10xi32>, vector<10xi32> vector.print %v9 : vector<10xi32> // Release the resources. bufferization.dealloc_tensor %1 : tensor<10xi32, #SV> bufferization.dealloc_tensor %3 : tensor<10xf32, #SV> bufferization.dealloc_tensor %5 : tensor<10xf64, #SV> bufferization.dealloc_tensor %7 : tensor<10xf64, #SV> bufferization.dealloc_tensor %c0 : tensor<10xf32> bufferization.dealloc_tensor %c1 : tensor<10xf32> bufferization.dealloc_tensor %c2 : tensor<10xi32> bufferization.dealloc_tensor %c3 : tensor<10xi32> bufferization.dealloc_tensor %c4 : tensor<10xf64> bufferization.dealloc_tensor %c5 : tensor<10xf32> bufferization.dealloc_tensor %c6 : tensor<10xi64> bufferization.dealloc_tensor %c7 : tensor<10xi64> bufferization.dealloc_tensor %c8 : tensor<10xi8> bufferization.dealloc_tensor %c9 : tensor<10xi32> return } }