//-------------------------------------------------------------------------------------------------- // WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS. // // Set-up that's shared across all tests in this directory. In principle, this // config could be moved to lit.local.cfg. However, there are downstream users that // do not use these LIT config files. Hence why this is kept inline. // // DEFINE: %{sparsifier_opts} = enable-runtime-library=true // DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts} // DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}" // DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}" // DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils // DEFINE: %{run_opts} = -e main -entry-point-result=void // DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs} // DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs} // // DEFINE: %{env} = //-------------------------------------------------------------------------------------------------- // RUN: %{compile} | %{run} | FileCheck %s // // Do the same run, but now with direct IR generation. // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true // RUN: %{compile} | %{run} | FileCheck %s // // Do the same run, but now with direct IR generation and vectorization. // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true // RUN: %{compile} | %{run} | FileCheck %s // // Do the same run, but now with direct IR generation and VLA vectorization. // RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %} #DCSR = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : compressed, d1 : compressed) }> #trait = { indexing_maps = [ affine_map<(i,j) -> (i,j)>, // A affine_map<(i,j) -> (i,j)>, // B affine_map<(i,j) -> (i,j)> // x (out) ], iterator_types = ["parallel", "parallel"], doc = "X(i, j) = cmp A(i,j) B(i, j)" } // // Integration test that lowers a kernel annotated as sparse to // actual sparse code, initializes a matching sparse storage scheme // from file, and runs the resulting code with the JIT compiler. // module { func.func @cmp_all_dense(%arga: tensor<4x4xf64>, %argb: tensor<4x4xf64>, %argx: tensor<4x4xi8>) -> tensor<4x4xi8> { %0 = linalg.generic #trait ins(%arga, %argb: tensor<4x4xf64>, tensor<4x4xf64>) outs(%argx: tensor<4x4xi8>) { ^bb(%a: f64, %b: f64, %x: i8): %0 = arith.cmpf ult, %a, %b : f64 %1 = arith.extui %0 : i1 to i8 linalg.yield %1 : i8 } -> tensor<4x4xi8> return %0 : tensor<4x4xi8> } func.func @cmp_lhs_sparse(%arga: tensor<4x4xf64, #DCSR>, %argb: tensor<4x4xf64>) -> tensor<4x4xi8, #DCSR> { %argx = tensor.empty() : tensor<4x4xi8, #DCSR> %0 = linalg.generic #trait ins(%arga, %argb: tensor<4x4xf64, #DCSR>, tensor<4x4xf64>) outs(%argx: tensor<4x4xi8, #DCSR>) { ^bb(%a: f64, %b: f64, %x: i8): %0 = arith.cmpf ult, %a, %b : f64 %1 = arith.extui %0 : i1 to i8 linalg.yield %1 : i8 } -> tensor<4x4xi8, #DCSR> return %0 : tensor<4x4xi8, #DCSR> } func.func @cmp_all_sparse(%arga: tensor<4x4xf64, #DCSR>, %argb: tensor<4x4xf64, #DCSR>) -> tensor<4x4xi8, #DCSR> { %argx = tensor.empty() : tensor<4x4xi8, #DCSR> %0 = linalg.generic #trait ins(%arga, %argb: tensor<4x4xf64, #DCSR>, tensor<4x4xf64, #DCSR>) outs(%argx: tensor<4x4xi8, #DCSR>) { ^bb(%a: f64, %b: f64, %x: i8): %0 = arith.cmpf ult, %a, %b : f64 %1 = arith.extui %0 : i1 to i8 linalg.yield %1 : i8 } -> tensor<4x4xi8, #DCSR> return %0 : tensor<4x4xi8, #DCSR> } // // Main driver that constructs matrix and calls the sparse kernel to perform // element-wise comparison. // func.func @main() { %d0 = arith.constant 0 : i8 %c0 = arith.constant 0 : index %lhs_dn = arith.constant dense< [ [ 0.0, 0.0, 1.5, 1.0], [ 0.0, 3.5, 0.0, 0.0], [ 1.0, 5.0, 2.0, 0.0], [ 1.0, 0.5, 0.0, 0.0] ]> : tensor<4x4xf64> %rhs_dn = arith.constant dense< [ [ 0.0, 1.5, 1.0, 1.5], [ 3.5, 0.0, 0.0, 0.0], [ 5.0, 2.0, 0.0, 2.0], [ 0.5, 0.0, 0.0, 0.0] ]> : tensor<4x4xf64> %lhs_sp = sparse_tensor.convert %lhs_dn : tensor<4x4xf64> to tensor<4x4xf64, #DCSR> %rhs_sp = sparse_tensor.convert %rhs_dn : tensor<4x4xf64> to tensor<4x4xf64, #DCSR> %output = arith.constant dense<0> : tensor<4x4xi8> %all_dn_out = call @cmp_all_dense(%lhs_dn, %rhs_dn, %output) : (tensor<4x4xf64>, tensor<4x4xf64>, tensor<4x4xi8>) -> tensor<4x4xi8> %lhs_sp_out = call @cmp_lhs_sparse(%lhs_sp, %rhs_dn) : (tensor<4x4xf64, #DCSR>, tensor<4x4xf64>) -> tensor<4x4xi8, #DCSR> %all_sp_out = call @cmp_all_sparse(%lhs_sp, %rhs_sp) : (tensor<4x4xf64, #DCSR>, tensor<4x4xf64, #DCSR>) -> tensor<4x4xi8, #DCSR> // // All should have the same boolean values. // // CHECK: ( ( 0, 1, 0, 1 ), ( 1, 0, 0, 0 ), ( 1, 0, 0, 1 ), ( 0, 0, 0, 0 ) ) // // CHECK: ---- Sparse Tensor ---- // CHECK-NEXT: nse = 16 // CHECK-NEXT: dim = ( 4, 4 ) // CHECK-NEXT: lvl = ( 4, 4 ) // CHECK-NEXT: pos[0] : ( 0, 4 // CHECK-NEXT: crd[0] : ( 0, 1, 2, 3 // CHECK-NEXT: pos[1] : ( 0, 4, 8, 12, 16 // CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3 // CHECK-NEXT: values : ( 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0 // CHECK-NEXT: ---- // // CHECK: ---- Sparse Tensor ---- // CHECK-NEXT: nse = 11 // CHECK-NEXT: dim = ( 4, 4 ) // CHECK-NEXT: lvl = ( 4, 4 ) // CHECK-NEXT: pos[0] : ( 0, 4 // CHECK-NEXT: crd[0] : ( 0, 1, 2, 3 // CHECK-NEXT: pos[1] : ( 0, 3, 5, 9, 11 // CHECK-NEXT: crd[1] : ( 1, 2, 3, 0, 1, 0, 1, 2, 3, 0, 1 // CHECK-NEXT: values : ( 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0 // CHECK-NEXT: ---- // %v = vector.transfer_read %all_dn_out[%c0, %c0], %d0 : tensor<4x4xi8>, vector<4x4xi8> vector.print %v : vector<4x4xi8> sparse_tensor.print %lhs_sp_out : tensor<4x4xi8, #DCSR> sparse_tensor.print %all_sp_out : tensor<4x4xi8, #DCSR> bufferization.dealloc_tensor %lhs_sp : tensor<4x4xf64, #DCSR> bufferization.dealloc_tensor %rhs_sp : tensor<4x4xf64, #DCSR> bufferization.dealloc_tensor %all_dn_out : tensor<4x4xi8> bufferization.dealloc_tensor %lhs_sp_out : tensor<4x4xi8, #DCSR> bufferization.dealloc_tensor %all_sp_out : tensor<4x4xi8, #DCSR> return } }