//-------------------------------------------------------------------------------------------------- // WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS. // // Set-up that's shared across all tests in this directory. In principle, this // config could be moved to lit.local.cfg. However, there are downstream users that // do not use these LIT config files. Hence why this is kept inline. // // DEFINE: %{sparsifier_opts} = enable-runtime-library=true // DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts} // DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}" // DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}" // DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils // DEFINE: %{run_opts} = -e main -entry-point-result=void // DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs} // DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs} // // DEFINE: %{env} = //-------------------------------------------------------------------------------------------------- // RUN: %{compile} | %{run} | FileCheck %s // // Do the same run, but now with direct IR generation. // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false // RUN: %{compile} | %{run} | FileCheck %s // // Do the same run, but now with direct IR generation and vectorization. // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true // RUN: %{compile} | %{run} | FileCheck %s // // Do the same run, but now with direct IR generation and VLA vectorization. // RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %} #SparseVector = #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed) }> module { // // Sparse kernel. // func.func @sparse_dot(%a: tensor<1024xf32, #SparseVector>, %b: tensor<1024xf32, #SparseVector>, %x: tensor) -> tensor { %dot = linalg.dot ins(%a, %b: tensor<1024xf32, #SparseVector>, tensor<1024xf32, #SparseVector>) outs(%x: tensor) -> tensor return %dot : tensor } // // Main driver. // func.func @main() { // Setup two sparse vectors. %d1 = arith.constant sparse< [ [0], [1], [22], [23], [1022] ], [1.0, 2.0, 3.0, 4.0, 5.0] > : tensor<1024xf32> %d2 = arith.constant sparse< [ [22], [1022], [1023] ], [6.0, 7.0, 8.0] > : tensor<1024xf32> %s1 = sparse_tensor.convert %d1 : tensor<1024xf32> to tensor<1024xf32, #SparseVector> %s2 = sparse_tensor.convert %d2 : tensor<1024xf32> to tensor<1024xf32, #SparseVector> // // Verify the inputs. // // CHECK: ---- Sparse Tensor ---- // CHECK-NEXT: nse = 5 // CHECK-NEXT: dim = ( 1024 ) // CHECK-NEXT: lvl = ( 1024 ) // CHECK-NEXT: pos[0] : ( 0, 5 // CHECK-NEXT: crd[0] : ( 0, 1, 22, 23, 1022 // CHECK-NEXT: values : ( 1, 2, 3, 4, 5 // CHECK-NEXT: ---- // // CHECK: ---- Sparse Tensor ---- // CHECK-NEXT: nse = 3 // CHECK-NEXT: dim = ( 1024 ) // CHECK-NEXT: lvl = ( 1024 ) // CHECK-NEXT: pos[0] : ( 0, 3 // CHECK-NEXT: crd[0] : ( 22, 1022, 1023 // CHECK-NEXT: values : ( 6, 7, 8 // CHECK-NEXT: ---- // sparse_tensor.print %s1 : tensor<1024xf32, #SparseVector> sparse_tensor.print %s2 : tensor<1024xf32, #SparseVector> // Call the kernel and verify the output. // // CHECK: 53 // %t = tensor.empty() : tensor %z = arith.constant 0.0 : f32 %x = tensor.insert %z into %t[] : tensor %0 = call @sparse_dot(%s1, %s2, %x) : (tensor<1024xf32, #SparseVector>, tensor<1024xf32, #SparseVector>, tensor) -> tensor %1 = tensor.extract %0[] : tensor vector.print %1 : f32 // Release the resources. bufferization.dealloc_tensor %0 : tensor bufferization.dealloc_tensor %s1 : tensor<1024xf32, #SparseVector> bufferization.dealloc_tensor %s2 : tensor<1024xf32, #SparseVector> return } }