//-------------------------------------------------------------------------------------------------- // WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS. // // Set-up that's shared across all tests in this directory. In principle, this // config could be moved to lit.local.cfg. However, there are downstream users that // do not use these LIT config files. Hence why this is kept inline. // // DEFINE: %{sparsifier_opts} = enable-runtime-library=true // DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts} // DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}" // DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}" // DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils // DEFINE: %{run_opts} = -e main -entry-point-result=void // DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs} // DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs} // // DEFINE: %{env} = //-------------------------------------------------------------------------------------------------- // REDEFINE: %{env} = TENSOR0="%mlir_src_dir/test/Integration/data/ds.mtx" // RUN: %{compile} | env %{env} %{run} | FileCheck %s // // Do the same run, but now with direct IR generation. // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false // RUN: %{compile} | env %{env} %{run} | FileCheck %s // // Do the same run, but now with direct IR generation and vectorization. // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true vl=2 reassociate-fp-reductions=true enable-index-optimizations=true // RUN: %{compile} | env %{env} %{run} | FileCheck %s !Filename = !llvm.ptr #CSR = #sparse_tensor.encoding<{ map = (i, j) -> ( i : dense, j : compressed) }> #CSR_hi = #sparse_tensor.encoding<{ map = (i, j) -> ( i : dense, j : loose_compressed) }> #NV_24 = #sparse_tensor.encoding<{ map = ( i, j ) -> ( i : dense, j floordiv 4 : dense, j mod 4 : structured[2, 4]), crdWidth = 8 }> #NV_58 = #sparse_tensor.encoding<{ map = ( i, j ) -> ( i : dense, j floordiv 8 : dense, j mod 8 : structured[5, 8]), crdWidth = 8 }> module { func.func private @getTensorFilename(index) -> (!Filename) // // Input matrix: // // [[0.0, 0.0, 1.0, 2.0, 0.0, 3.0, 0.0, 4.0], // [0.0, 5.0, 6.0, 0.0, 7.0, 0.0, 0.0, 8.0], // [9.0, 0.0, 10.0, 0.0, 11.0, 12.0, 0.0, 0.0]] // func.func @main() { %c0 = arith.constant 0 : index %fileName = call @getTensorFilename(%c0) : (index) -> (!Filename) %A1 = sparse_tensor.new %fileName : !Filename to tensor %A2 = sparse_tensor.new %fileName : !Filename to tensor %A3 = sparse_tensor.new %fileName : !Filename to tensor %A4 = sparse_tensor.new %fileName : !Filename to tensor // // CSR: // // CHECK: ---- Sparse Tensor ---- // CHECK-NEXT: nse = 12 // CHECK-NEXT: dim = ( 3, 8 ) // CHECK-NEXT: lvl = ( 3, 8 ) // CHECK-NEXT: pos[1] : ( 0, 4, 8, 12, // CHECK-NEXT: crd[1] : ( 2, 3, 5, 7, 1, 2, 4, 7, 0, 2, 4, 5, // CHECK-NEXT: values : ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, // CHECK-NEXT: ---- // sparse_tensor.print %A1 : tensor // // CSR_hi: // // CHECK-NEXT: ---- Sparse Tensor ---- // CHECK-NEXT: nse = 12 // CHECK-NEXT: dim = ( 3, 8 ) // CHECK-NEXT: lvl = ( 3, 8 ) // CHECK-NEXT: pos[1] : ( 0, 4, 4, 8, 8, 12, // CHECK-NEXT: crd[1] : ( 2, 3, 5, 7, 1, 2, 4, 7, 0, 2, 4, 5, // CHECK-NEXT: values : ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, // CHECK-NEXT: ---- // sparse_tensor.print %A2 : tensor // // NV_24: // // CHECK-NEXT: ---- Sparse Tensor ---- // CHECK-NEXT: nse = 12 // CHECK-NEXT: dim = ( 3, 8 ) // CHECK-NEXT: lvl = ( 3, 2, 4 ) // CHECK-NEXT: crd[2] : ( 2, 3, 1, 3, 1, 2, 0, 3, 0, 2, 0, 1, // CHECK-NEXT: values : ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, // CHECK-NEXT: ---- // CHECK-NEXT: ---- Sparse Tensor ---- // sparse_tensor.print %A3 : tensor // // NV_58: // // CHECK-NEXT: nse = 12 // CHECK-NEXT: dim = ( 3, 8 ) // CHECK-NEXT: lvl = ( 3, 1, 8 ) // CHECK-NEXT: crd[2] : ( 2, 3, 5, 7, 1, 2, 4, 7, 0, 2, 4, 5, // CHECK-NEXT: values : ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, // CHECK-NEXT: ---- // sparse_tensor.print %A4 : tensor // Release the resources. bufferization.dealloc_tensor %A1: tensor bufferization.dealloc_tensor %A2: tensor bufferization.dealloc_tensor %A3: tensor bufferization.dealloc_tensor %A4: tensor return } }