//-------------------------------------------------------------------------------------------------- // WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS. // // Set-up that's shared across all tests in this directory. In principle, this // config could be moved to lit.local.cfg. However, there are downstream users that // do not use these LIT config files. Hence why this is kept inline. // // DEFINE: %{sparsifier_opts} = enable-runtime-library=true // DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts} // DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}" // DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}" // DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils // DEFINE: %{run_opts} = -e main -entry-point-result=void // DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs} // DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs} // // DEFINE: %{env} = //-------------------------------------------------------------------------------------------------- // RUN: %{compile} | %{run} | FileCheck %s // // Do the same run, but now with direct IR generation. // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true // RUN: %{compile} | %{run} | FileCheck %s // // Do the same run, but now with direct IR generation and vectorization. // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true vl=2 reassociate-fp-reductions=true enable-index-optimizations=true // RUN: %{compile} | %{run} | FileCheck %s // // Do the same run, but now with direct IR generation and VLA vectorization. // RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %} #map = affine_map<(d0) -> (d0)> #SV = #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed) }> module { // This directly yields an empty sparse vector. func.func @empty() -> tensor<10xf32, #SV> { %0 = tensor.empty() : tensor<10xf32, #SV> return %0 : tensor<10xf32, #SV> } // This also directly yields an empty sparse vector. func.func @empty_alloc() -> tensor<10xf32, #SV> { %0 = bufferization.alloc_tensor() : tensor<10xf32, #SV> return %0 : tensor<10xf32, #SV> } // This yields a hidden empty sparse vector (all zeros). func.func @zeros() -> tensor<10xf32, #SV> { %cst = arith.constant 0.0 : f32 %0 = bufferization.alloc_tensor() : tensor<10xf32, #SV> %1 = linalg.generic { indexing_maps = [#map], iterator_types = ["parallel"]} outs(%0 : tensor<10xf32, #SV>) { ^bb0(%out: f32): linalg.yield %cst : f32 } -> tensor<10xf32, #SV> return %1 : tensor<10xf32, #SV> } // This yields a filled sparse vector (all ones). func.func @ones() -> tensor<10xf32, #SV> { %cst = arith.constant 1.0 : f32 %0 = bufferization.alloc_tensor() : tensor<10xf32, #SV> %1 = linalg.generic { indexing_maps = [#map], iterator_types = ["parallel"]} outs(%0 : tensor<10xf32, #SV>) { ^bb0(%out: f32): linalg.yield %cst : f32 } -> tensor<10xf32, #SV> return %1 : tensor<10xf32, #SV> } // // Main driver. // func.func @main() { %0 = call @empty() : () -> tensor<10xf32, #SV> %1 = call @empty_alloc() : () -> tensor<10xf32, #SV> %2 = call @zeros() : () -> tensor<10xf32, #SV> %3 = call @ones() : () -> tensor<10xf32, #SV> // // Verify the output. In particular, make sure that // all empty sparse vector data structures are properly // finalized with a pair (0,0) for positions. // // CHECK: ---- Sparse Tensor ---- // CHECK-NEXT: nse = 0 // CHECK-NEXT: dim = ( 10 ) // CHECK-NEXT: lvl = ( 10 ) // CHECK-NEXT: pos[0] : ( 0, 0, // CHECK-NEXT: crd[0] : ( // CHECK-NEXT: values : ( // CHECK-NEXT: ---- // // CHECK-NEXT: ---- Sparse Tensor ---- // CHECK-NEXT: nse = 0 // CHECK-NEXT: dim = ( 10 ) // CHECK-NEXT: lvl = ( 10 ) // CHECK-NEXT: pos[0] : ( 0, 0, // CHECK-NEXT: crd[0] : ( // CHECK-NEXT: values : ( // CHECK-NEXT: ---- // // CHECK-NEXT: ---- Sparse Tensor ---- // CHECK-NEXT: nse = 0 // CHECK-NEXT: dim = ( 10 ) // CHECK-NEXT: lvl = ( 10 ) // CHECK-NEXT: pos[0] : ( 0, 0, // CHECK-NEXT: crd[0] : ( // CHECK-NEXT: values : ( // CHECK-NEXT: ---- // // CHECK-NEXT: ---- Sparse Tensor ---- // CHECK-NEXT: nse = 10 // CHECK-NEXT: dim = ( 10 ) // CHECK-NEXT: lvl = ( 10 ) // CHECK-NEXT: pos[0] : ( 0, 10, // CHECK-NEXT: crd[0] : ( 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, // CHECK-NEXT: values : ( 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // CHECK-NEXT: ---- // sparse_tensor.print %0 : tensor<10xf32, #SV> sparse_tensor.print %1 : tensor<10xf32, #SV> sparse_tensor.print %2 : tensor<10xf32, #SV> sparse_tensor.print %3 : tensor<10xf32, #SV> bufferization.dealloc_tensor %0 : tensor<10xf32, #SV> bufferization.dealloc_tensor %1 : tensor<10xf32, #SV> bufferization.dealloc_tensor %2 : tensor<10xf32, #SV> bufferization.dealloc_tensor %3 : tensor<10xf32, #SV> return } }