//-------------------------------------------------------------------------------------------------- // WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS. // // Set-up that's shared across all tests in this directory. In principle, this // config could be moved to lit.local.cfg. However, there are downstream users that // do not use these LIT config files. Hence why this is kept inline. // // DEFINE: %{sparsifier_opts} = enable-runtime-library=true // DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts} // DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}" // DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}" // DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils // DEFINE: %{run_opts} = -e main -entry-point-result=void // DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs} // DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs} // // DEFINE: %{env} = //-------------------------------------------------------------------------------------------------- // RUN: %{compile} | %{run} | FileCheck %s // // Do the same run, but now with direct IR generation. // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false // RUN: %{compile} | %{run} | FileCheck %s // // Do the same run, but now with direct IR generation and vectorization. // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true // RUN: %{compile} | %{run} | FileCheck %s // // Do the same run, but now with direct IR generation and VLA vectorization. // RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %} #CSC = #sparse_tensor.encoding<{ map = (d0, d1) -> (d1 : dense, d0 : compressed) }> module { // // Column-wise storage forces the ijk loop to permute into jki // so that access pattern expansion (workspace) needs to be // done along dimension with size 8. // func.func @matmul(%A: tensor<8x2xf64, #CSC>, %B: tensor<2x4xf64, #CSC>) -> tensor<8x4xf64, #CSC> { %C = tensor.empty() : tensor<8x4xf64, #CSC> %D = linalg.matmul ins(%A, %B: tensor<8x2xf64, #CSC>, tensor<2x4xf64, #CSC>) outs(%C: tensor<8x4xf64, #CSC>) -> tensor<8x4xf64, #CSC> return %D: tensor<8x4xf64, #CSC> } // // Main driver. // func.func @main() { %c0 = arith.constant 0 : index %d1 = arith.constant -1.0 : f64 // Initialize various dense matrices for stress testing. %da = arith.constant dense<[ [ 1.1, 2.1 ], [ 1.2, 2.2 ], [ 1.3, 2.3 ], [ 1.4, 2.4 ], [ 1.5, 2.5 ], [ 1.6, 2.6 ], [ 1.7, 2.7 ], [ 1.8, 2.8 ] ]> : tensor<8x2xf64> %db = arith.constant dense<[ [ 10.1, 11.1, 12.1, 13.1 ], [ 10.2, 11.2, 12.2, 13.2 ] ]> : tensor<2x4xf64> // Convert all these matrices to sparse format. %x1 = sparse_tensor.convert %da : tensor<8x2xf64> to tensor<8x2xf64, #CSC> %x2 = sparse_tensor.convert %db : tensor<2x4xf64> to tensor<2x4xf64, #CSC> // Call kernels with dense. %x3 = call @matmul(%x1, %x2) : (tensor<8x2xf64, #CSC>, tensor<2x4xf64, #CSC>) -> tensor<8x4xf64, #CSC> // // CHECK: ---- Sparse Tensor ---- // CHECK-NEXT: nse = 32 // CHECK-NEXT: dim = ( 8, 4 ) // CHECK-NEXT: lvl = ( 4, 8 ) // CHECK-NEXT: pos[1] : ( 0, 8, 16, 24, 32 // CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, // CHECK-SAME: 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7 // CHECK-NEXT: values : ( 32.53, 34.56, 36.59, 38.62, 40.65, 42.68, 44.71, 46.74, // CHECK-SAME: 35.73, 37.96, 40.19, 42.42, 44.65, 46.88, 49.11, 51.34, // CHECK-SAME: 38.93, 41.36, 43.79, 46.22, 48.65, 51.08, 53.51, 55.94, // CHECK-SAME: 42.13, 44.76, 47.39, 50.02, 52.65, 55.28, 57.91, 60.54 // CHECK-NEXT: ---- // sparse_tensor.print %x3 : tensor<8x4xf64, #CSC> // Release the resources. bufferization.dealloc_tensor %x1 : tensor<8x2xf64, #CSC> bufferization.dealloc_tensor %x2 : tensor<2x4xf64, #CSC> bufferization.dealloc_tensor %x3 : tensor<8x4xf64, #CSC> return } }