//-------------------------------------------------------------------------------------------------- // WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS. // // Set-up that's shared across all tests in this directory. In principle, this // config could be moved to lit.local.cfg. However, there are downstream users that // do not use these LIT config files. Hence why this is kept inline. // // DEFINE: %{sparsifier_opts} = enable-runtime-library=true // DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts} // DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}" // DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}" // DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils // DEFINE: %{run_opts} = -e main -entry-point-result=void // DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs} // DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs} // // DEFINE: %{env} = //-------------------------------------------------------------------------------------------------- // RUN: %{compile} | %{run} | FileCheck %s // // Integration test that generates a tensor with specified sparsity level. // !Generator = !llvm.ptr !Array = !llvm.ptr #SparseVector = #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed) }> module { func.func private @rtsrand(index) -> (!Generator) func.func private @rtrand(!Generator, index) -> (index) func.func private @rtdrand(!Generator) -> () func.func private @shuffle(memref, !Generator) -> () attributes { llvm.emit_c_interface } // // Main driver. // func.func @main() { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %f0 = arith.constant 0.0 : f64 %c99 = arith.constant 99 : index %c100 = arith.constant 100 : index // Set up input size and sparsity level. %size = arith.constant 50 : index %sparsity = arith.constant 90 : index %zeros = arith.muli %size, %sparsity : index %nz = arith.floordivsi %zeros, %c100 : index %nse = arith.subi %size, %nz : index // Set up an empty vector. %empty = tensor.empty(%size) : tensor %zero_vec = linalg.fill ins(%f0 : f64) outs(%empty : tensor) -> tensor // Generate shuffled indices in the range of [0, %size). %array = memref.alloc (%size) : memref %g = func.call @rtsrand(%c0) : (index) ->(!Generator) func.call @shuffle(%array, %g) : (memref, !Generator) -> () // Iterate through the number of nse indices to insert values. %output = scf.for %iv = %c0 to %nse step %c1 iter_args(%iter = %zero_vec) -> tensor { // Fetch the index to insert value from shuffled index array. %val = memref.load %array[%iv] : memref %idx = arith.index_cast %val : i64 to index // Generate a random number from 1 to 100. %ri0 = func.call @rtrand(%g, %c99) : (!Generator, index) -> (index) %ri1 = arith.addi %ri0, %c1 : index %r0 = arith.index_cast %ri1 : index to i64 %fr = arith.uitofp %r0 : i64 to f64 // Insert the random number to current index. %out = tensor.insert %fr into %iter[%idx] : tensor scf.yield %out : tensor } %sv = sparse_tensor.convert %output : tensor to tensor %n0 = sparse_tensor.number_of_entries %sv : tensor // Print the number of non-zeros for verification // as shuffle may generate different numbers. // // CHECK: 5 vector.print %n0 : index // Release the resources. bufferization.dealloc_tensor %sv : tensor bufferization.dealloc_tensor %empty : tensor memref.dealloc %array : memref func.call @rtdrand(%g) : (!Generator) -> () return } }