//-------------------------------------------------------------------------------------------------- // WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS. // // Set-up that's shared across all tests in this directory. In principle, this // config could be moved to lit.local.cfg. However, there are downstream users that // do not use these LIT config files. Hence why this is kept inline. // // DEFINE: %{sparsifier_opts} = enable-runtime-library=true // DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts} // DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}" // DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}" // DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils // DEFINE: %{run_opts} = -e main -entry-point-result=void // DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs} // DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs} // // DEFINE: %{env} = //-------------------------------------------------------------------------------------------------- // RUN: %{compile} | %{run} | FileCheck %s // // Do the same run, but now with direct IR generation. // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false // RUN: %{compile} | %{run} | FileCheck %s // // Do the same run, but now with direct IR generation and vectorization. // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true // RUN: %{compile} | %{run} | FileCheck %s // // Do the same run, but now with direct IR generation and VLA vectorization. // RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %} #SortedCOO = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton) }> #SortedCOOI32 = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton), posWidth = 32, crdWidth = 32 }> #CSR = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed), posWidth = 32, crdWidth = 32 }> #BCOO = #sparse_tensor.encoding<{ map = (d0, d1, d2) -> (d0 : dense, d1 : loose_compressed(nonunique), d2 : singleton) }> module { // // Main driver. // func.func @main() { %c0 = arith.constant 0 : index %f0 = arith.constant 0.0 : f64 %i0 = arith.constant 0 : i32 // // Setup COO. // %data = arith.constant dense< [ 1.0, 2.0, 3.0 ] > : tensor<3xf64> %pos = arith.constant dense< [0, 3] > : tensor<2xindex> %index = arith.constant dense< [[ 1, 2], [ 5, 6], [ 7, 8]] > : tensor<3x2xindex> %pos32 = arith.constant dense< [0, 3] > : tensor<2xi32> %index32 = arith.constant dense< [[ 1, 2], [ 5, 6], [ 7, 8]] > : tensor<3x2xi32> %s4 = sparse_tensor.assemble (%pos, %index), %data : (tensor<2xindex>, tensor<3x2xindex>), tensor<3xf64> to tensor<10x10xf64, #SortedCOO> %s5 = sparse_tensor.assemble (%pos32, %index32), %data : (tensor<2xi32>, tensor<3x2xi32>), tensor<3xf64> to tensor<10x10xf64, #SortedCOOI32> // // Setup CSR. // %csr_data = arith.constant dense< [ 1.0, 2.0, 3.0 ] > : tensor<3xf64> %csr_pos32 = arith.constant dense< [0, 1, 3] > : tensor<3xi32> %csr_index32 = arith.constant dense< [1, 0, 1] > : tensor<3xi32> %csr = sparse_tensor.assemble (%csr_pos32, %csr_index32), %csr_data : (tensor<3xi32>, tensor<3xi32>), tensor<3xf64> to tensor<2x2xf64, #CSR> // // Setup BCOO. // %bdata = arith.constant dense< [ 1.0, 2.0, 3.0, 4.0, 5.0 ] > : tensor<5xf64> %bpos = arith.constant dense< [0, 3, 3, 5] > : tensor<4xindex> %bindex = arith.constant dense< [[ 1, 2], [ 5, 6], [ 7, 8], [ 2, 3], [ 4, 2], [ 10, 10]] > : tensor<6x2xindex> %bs = sparse_tensor.assemble (%bpos, %bindex), %bdata : (tensor<4xindex>, tensor<6x2xindex>), tensor<5xf64> to tensor<2x10x10xf64, #BCOO> // // Verify results. // // CHECK: 1 // CHECK-NEXT:2 // CHECK-NEXT:1 // // CHECK-NEXT:5 // CHECK-NEXT:6 // CHECK-NEXT:2 // // CHECK-NEXT:7 // CHECK-NEXT:8 // CHECK-NEXT:3 sparse_tensor.foreach in %s4 : tensor<10x10xf64, #SortedCOO> do { ^bb0(%1: index, %2: index, %v: f64) : vector.print %1: index vector.print %2: index vector.print %v: f64 } // CHECK-NEXT:1 // CHECK-NEXT:2 // CHECK-NEXT:1 // // CHECK-NEXT:5 // CHECK-NEXT:6 // CHECK-NEXT:2 // // CHECK-NEXT:7 // CHECK-NEXT:8 // CHECK-NEXT:3 sparse_tensor.foreach in %s5 : tensor<10x10xf64, #SortedCOOI32> do { ^bb0(%1: index, %2: index, %v: f64) : vector.print %1: index vector.print %2: index vector.print %v: f64 } // CHECK-NEXT:0 // CHECK-NEXT:1 // CHECK-NEXT:1 // // CHECK-NEXT:1 // CHECK-NEXT:0 // CHECK-NEXT:2 // // CHECK-NEXT:1 // CHECK-NEXT:1 // CHECK-NEXT:3 sparse_tensor.foreach in %csr : tensor<2x2xf64, #CSR> do { ^bb0(%1: index, %2: index, %v: f64) : vector.print %1: index vector.print %2: index vector.print %v: f64 } // CHECK-NEXT:0 // CHECK-NEXT:1 // CHECK-NEXT:2 // CHECK-NEXT:1 // // CHECK-NEXT:0 // CHECK-NEXT:5 // CHECK-NEXT:6 // CHECK-NEXT:2 // // CHECK-NEXT:0 // CHECK-NEXT:7 // CHECK-NEXT:8 // CHECK-NEXT:3 // // CHECK-NEXT:1 // CHECK-NEXT:2 // CHECK-NEXT:3 // CHECK-NEXT:4 // // CHECK-NEXT:1 // CHECK-NEXT:4 // CHECK-NEXT:2 // CHECK-NEXT:5 sparse_tensor.foreach in %bs : tensor<2x10x10xf64, #BCOO> do { ^bb0(%0: index, %1: index, %2: index, %v: f64) : vector.print %0: index vector.print %1: index vector.print %2: index vector.print %v: f64 } // // Verify disassemble operations. // %od = tensor.empty() : tensor<3xf64> %op = tensor.empty() : tensor<2xi32> %oi = tensor.empty() : tensor<3x2xi32> %p, %i, %d, %pl, %il, %dl = sparse_tensor.disassemble %s5 : tensor<10x10xf64, #SortedCOOI32> out_lvls(%op, %oi : tensor<2xi32>, tensor<3x2xi32>) out_vals(%od : tensor<3xf64>) -> (tensor<2xi32>, tensor<3x2xi32>), tensor<3xf64>, (i32, i64), index // CHECK-NEXT: ( 1, 2, 3 ) %vd = vector.transfer_read %d[%c0], %f0 : tensor<3xf64>, vector<3xf64> vector.print %vd : vector<3xf64> // CHECK-NEXT: ( ( 1, 2 ), ( 5, 6 ), ( 7, 8 ) ) %vi = vector.transfer_read %i[%c0, %c0], %i0 : tensor<3x2xi32>, vector<3x2xi32> vector.print %vi : vector<3x2xi32> // CHECK-NEXT: 3 vector.print %dl : index %d_csr = tensor.empty() : tensor<4xf64> %p_csr = tensor.empty() : tensor<3xi32> %i_csr = tensor.empty() : tensor<3xi32> %rp_csr, %ri_csr, %rd_csr, %lp_csr, %li_csr, %ld_csr = sparse_tensor.disassemble %csr : tensor<2x2xf64, #CSR> out_lvls(%p_csr, %i_csr : tensor<3xi32>, tensor<3xi32>) out_vals(%d_csr : tensor<4xf64>) -> (tensor<3xi32>, tensor<3xi32>), tensor<4xf64>, (i32, i64), index // CHECK-NEXT: ( 1, 2, 3 ) %vd_csr = vector.transfer_read %rd_csr[%c0], %f0 : tensor<4xf64>, vector<3xf64> vector.print %vd_csr : vector<3xf64> // CHECK-NEXT: 3 vector.print %ld_csr : index %bod = tensor.empty() : tensor<6xf64> %bop = tensor.empty() : tensor<4xindex> %boi = tensor.empty() : tensor<6x2xindex> %bp, %bi, %bd, %lp, %li, %ld = sparse_tensor.disassemble %bs : tensor<2x10x10xf64, #BCOO> out_lvls(%bop, %boi : tensor<4xindex>, tensor<6x2xindex>) out_vals(%bod : tensor<6xf64>) -> (tensor<4xindex>, tensor<6x2xindex>), tensor<6xf64>, (i32, tensor), index // CHECK-NEXT: ( 1, 2, 3, 4, 5 ) %vbd = vector.transfer_read %bd[%c0], %f0 : tensor<6xf64>, vector<5xf64> vector.print %vbd : vector<5xf64> // CHECK-NEXT: 5 vector.print %ld : index // CHECK-NEXT: ( ( 1, 2 ), ( 5, 6 ), ( 7, 8 ), ( 2, 3 ), ( 4, 2 ), ( {{.*}}, {{.*}} ) ) %vbi = vector.transfer_read %bi[%c0, %c0], %c0 : tensor<6x2xindex>, vector<6x2xindex> vector.print %vbi : vector<6x2xindex> // CHECK-NEXT: 10 %si = tensor.extract %li[] : tensor vector.print %si : i64 // TODO: This check is no longer needed once the codegen path uses the // buffer deallocation pass. "dealloc_tensor" turn into a no-op in the // codegen path. %has_runtime = sparse_tensor.has_runtime_library scf.if %has_runtime { // sparse_tensor.assemble copies buffers when running with the runtime // library. Deallocations are not needed when running in codegen mode. bufferization.dealloc_tensor %s4 : tensor<10x10xf64, #SortedCOO> bufferization.dealloc_tensor %s5 : tensor<10x10xf64, #SortedCOOI32> bufferization.dealloc_tensor %csr : tensor<2x2xf64, #CSR> bufferization.dealloc_tensor %bs : tensor<2x10x10xf64, #BCOO> } bufferization.dealloc_tensor %li : tensor bufferization.dealloc_tensor %od : tensor<3xf64> bufferization.dealloc_tensor %op : tensor<2xi32> bufferization.dealloc_tensor %oi : tensor<3x2xi32> bufferization.dealloc_tensor %d_csr : tensor<4xf64> bufferization.dealloc_tensor %p_csr : tensor<3xi32> bufferization.dealloc_tensor %i_csr : tensor<3xi32> bufferization.dealloc_tensor %bod : tensor<6xf64> bufferization.dealloc_tensor %bop : tensor<4xindex> bufferization.dealloc_tensor %boi : tensor<6x2xindex> return } }