//-------------------------------------------------------------------------------------------------- // WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS. // // Set-up that's shared across all tests in this directory. In principle, this // config could be moved to lit.local.cfg. However, there are downstream users that // do not use these LIT config files. Hence why this is kept inline. // // DEFINE: %{sparsifier_opts} = enable-runtime-library=true // DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts} // DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}" // DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}" // DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils // DEFINE: %{run_opts} = -e main -entry-point-result=void // DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs} // DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs} // // DEFINE: %{env} = //-------------------------------------------------------------------------------------------------- // REDEFINE: %{env} = TENSOR0=%mlir_src_dir/test/Integration/data/mttkrp_b.tns // RUN: %{compile} | env %{env} %{run} | FileCheck %s // // Do the same run, but now with direct IR generation. // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false // RUN: %{compile} | env %{env} %{run} | FileCheck %s !Filename = !llvm.ptr #S1 = #sparse_tensor.encoding<{ map = (d0, d1, d2) -> (d0 : compressed, d1 : compressed, d2 : compressed) }> #S2 = #sparse_tensor.encoding<{ map = (d0, d1, d2) -> (d0 : compressed, d2 : compressed, d1 : compressed) }> #S3 = #sparse_tensor.encoding<{ map = (d0, d1, d2) -> (d1 : compressed, d0 : compressed, d2 : compressed) }> #S4 = #sparse_tensor.encoding<{ map = (d0, d1, d2) -> (d1 : compressed, d2 : compressed, d0 : compressed) }> #S5 = #sparse_tensor.encoding<{ map = (d0, d1, d2) -> (d2 : compressed, d0 : compressed, d1 : compressed) }> #S6 = #sparse_tensor.encoding<{ map = (d0, d1, d2) -> (d2 : compressed, d1 : compressed, d0 : compressed) }> #trait_3d = { indexing_maps = [ affine_map<(i,j,k) -> (i,j,k)>, // B affine_map<(i,j,k) -> (i,j,k)> // A (out) ], iterator_types = ["parallel", "parallel", "parallel"], doc = "A(i,j,k) = B(i,j,k)" } // // Integration test that lowers a kernel annotated as sparse to // actual sparse code, initializes a matching sparse storage scheme // from file, and runs the resulting code with the JIT compiler. // module { func.func private @getTensorFilename(index) -> (!Filename) func.func @dump(%a: tensor<2x3x4xf64>) { %c0 = arith.constant 0 : index %f0 = arith.constant 0.0 : f64 %v = vector.transfer_read %a[%c0, %c0, %c0], %f0 : tensor<2x3x4xf64>, vector<2x3x4xf64> vector.print %v : vector<2x3x4xf64> return } //// S1 func.func @linalg1(%b: tensor<2x3x4xf64, #S1>)-> tensor<2x3x4xf64> { %0 = arith.constant dense<0.000000e+00> : tensor<2x3x4xf64> %a = linalg.generic #trait_3d ins(%b: tensor<2x3x4xf64, #S1>) outs(%0: tensor<2x3x4xf64>) { ^bb(%x: f64, %y: f64): linalg.yield %x : f64 } -> tensor<2x3x4xf64> return %a : tensor<2x3x4xf64> } func.func @convert1(%b: tensor<2x3x4xf64, #S1>) -> tensor<2x3x4xf64> { %a = sparse_tensor.convert %b : tensor<2x3x4xf64, #S1> to tensor<2x3x4xf64> return %a : tensor<2x3x4xf64> } func.func @foo1(%fileName : !Filename) { %b = sparse_tensor.new %fileName : !Filename to tensor<2x3x4xf64, #S1> %0 = call @linalg1(%b) : (tensor<2x3x4xf64, #S1>) -> tensor<2x3x4xf64> call @dump(%0) : (tensor<2x3x4xf64>) -> () %1 = call @convert1(%b) : (tensor<2x3x4xf64, #S1>) -> tensor<2x3x4xf64> call @dump(%1) : (tensor<2x3x4xf64>) -> () bufferization.dealloc_tensor %0 : tensor<2x3x4xf64> bufferization.dealloc_tensor %b : tensor<2x3x4xf64, #S1> bufferization.dealloc_tensor %1 : tensor<2x3x4xf64> return } //// S2 func.func @linalg2(%b: tensor<2x3x4xf64, #S2>)-> tensor<2x3x4xf64> { %0 = arith.constant dense<0.000000e+00> : tensor<2x3x4xf64> %a = linalg.generic #trait_3d ins(%b: tensor<2x3x4xf64, #S2>) outs(%0: tensor<2x3x4xf64>) { ^bb(%x: f64, %y: f64): linalg.yield %x : f64 } -> tensor<2x3x4xf64> return %a : tensor<2x3x4xf64> } func.func @convert2(%b: tensor<2x3x4xf64, #S2>) -> tensor<2x3x4xf64> { %a = sparse_tensor.convert %b : tensor<2x3x4xf64, #S2> to tensor<2x3x4xf64> return %a : tensor<2x3x4xf64> } func.func @foo2(%fileName : !Filename) { %b = sparse_tensor.new %fileName : !Filename to tensor<2x3x4xf64, #S2> %0 = call @linalg2(%b) : (tensor<2x3x4xf64, #S2>) -> tensor<2x3x4xf64> call @dump(%0) : (tensor<2x3x4xf64>) -> () %2 = call @convert2(%b) : (tensor<2x3x4xf64, #S2>) -> tensor<2x3x4xf64> call @dump(%2) : (tensor<2x3x4xf64>) -> () bufferization.dealloc_tensor %0 : tensor<2x3x4xf64> bufferization.dealloc_tensor %b : tensor<2x3x4xf64, #S2> bufferization.dealloc_tensor %2 : tensor<2x3x4xf64> return } //// S3 func.func @linalg3(%b: tensor<2x3x4xf64, #S3>)-> tensor<2x3x4xf64> { %0 = arith.constant dense<0.000000e+00> : tensor<2x3x4xf64> %a = linalg.generic #trait_3d ins(%b: tensor<2x3x4xf64, #S3>) outs(%0: tensor<2x3x4xf64>) { ^bb(%x: f64, %y: f64): linalg.yield %x : f64 } -> tensor<2x3x4xf64> return %a : tensor<2x3x4xf64> } func.func @convert3(%b: tensor<2x3x4xf64, #S3>) -> tensor<2x3x4xf64> { %a = sparse_tensor.convert %b : tensor<2x3x4xf64, #S3> to tensor<2x3x4xf64> return %a : tensor<2x3x4xf64> } func.func @foo3(%fileName : !Filename) { %b = sparse_tensor.new %fileName : !Filename to tensor<2x3x4xf64, #S3> %0 = call @linalg3(%b) : (tensor<2x3x4xf64, #S3>) -> tensor<2x3x4xf64> call @dump(%0) : (tensor<2x3x4xf64>) -> () %3 = call @convert3(%b) : (tensor<2x3x4xf64, #S3>) -> tensor<2x3x4xf64> call @dump(%3) : (tensor<2x3x4xf64>) -> () bufferization.dealloc_tensor %0 : tensor<2x3x4xf64> bufferization.dealloc_tensor %b : tensor<2x3x4xf64, #S3> bufferization.dealloc_tensor %3 : tensor<2x3x4xf64> return } //// S4 func.func @linalg4(%b: tensor<2x3x4xf64, #S4>)-> tensor<2x3x4xf64> { %0 = arith.constant dense<0.000000e+00> : tensor<2x3x4xf64> %a = linalg.generic #trait_3d ins(%b: tensor<2x3x4xf64, #S4>) outs(%0: tensor<2x3x4xf64>) { ^bb(%x: f64, %y: f64): linalg.yield %x : f64 } -> tensor<2x3x4xf64> return %a : tensor<2x3x4xf64> } func.func @convert4(%b: tensor<2x3x4xf64, #S4>) -> tensor<2x3x4xf64> { %a = sparse_tensor.convert %b : tensor<2x3x4xf64, #S4> to tensor<2x3x4xf64> return %a : tensor<2x3x4xf64> } func.func @foo4(%fileName : !Filename) { %b = sparse_tensor.new %fileName : !Filename to tensor<2x3x4xf64, #S4> %0 = call @linalg4(%b) : (tensor<2x3x4xf64, #S4>) -> tensor<2x3x4xf64> call @dump(%0) : (tensor<2x3x4xf64>) -> () %4 = call @convert4(%b) : (tensor<2x3x4xf64, #S4>) -> tensor<2x3x4xf64> call @dump(%4) : (tensor<2x3x4xf64>) -> () bufferization.dealloc_tensor %0 : tensor<2x3x4xf64> bufferization.dealloc_tensor %b : tensor<2x3x4xf64, #S4> bufferization.dealloc_tensor %4 : tensor<2x3x4xf64> return } //// S5 func.func @linalg5(%b: tensor<2x3x4xf64, #S5>)-> tensor<2x3x4xf64> { %0 = arith.constant dense<0.000000e+00> : tensor<2x3x4xf64> %a = linalg.generic #trait_3d ins(%b: tensor<2x3x4xf64, #S5>) outs(%0: tensor<2x3x4xf64>) { ^bb(%x: f64, %y: f64): linalg.yield %x : f64 } -> tensor<2x3x4xf64> return %a : tensor<2x3x4xf64> } func.func @convert5(%b: tensor<2x3x4xf64, #S5>) -> tensor<2x3x4xf64> { %a = sparse_tensor.convert %b : tensor<2x3x4xf64, #S5> to tensor<2x3x4xf64> return %a : tensor<2x3x4xf64> } func.func @foo5(%fileName : !Filename) { %b = sparse_tensor.new %fileName : !Filename to tensor<2x3x4xf64, #S5> %0 = call @linalg5(%b) : (tensor<2x3x4xf64, #S5>) -> tensor<2x3x4xf64> call @dump(%0) : (tensor<2x3x4xf64>) -> () %5 = call @convert5(%b) : (tensor<2x3x4xf64, #S5>) -> tensor<2x3x4xf64> call @dump(%5) : (tensor<2x3x4xf64>) -> () bufferization.dealloc_tensor %0 : tensor<2x3x4xf64> bufferization.dealloc_tensor %b : tensor<2x3x4xf64, #S5> bufferization.dealloc_tensor %5 : tensor<2x3x4xf64> return } //// S6 func.func @linalg6(%b: tensor<2x3x4xf64, #S6>)-> tensor<2x3x4xf64> { %0 = arith.constant dense<0.000000e+00> : tensor<2x3x4xf64> %a = linalg.generic #trait_3d ins(%b: tensor<2x3x4xf64, #S6>) outs(%0: tensor<2x3x4xf64>) { ^bb(%x: f64, %y: f64): linalg.yield %x : f64 } -> tensor<2x3x4xf64> return %a : tensor<2x3x4xf64> } func.func @convert6(%b: tensor<2x3x4xf64, #S6>) -> tensor<2x3x4xf64> { %a = sparse_tensor.convert %b : tensor<2x3x4xf64, #S6> to tensor<2x3x4xf64> return %a : tensor<2x3x4xf64> } func.func @foo6(%fileName : !Filename) { %b = sparse_tensor.new %fileName : !Filename to tensor<2x3x4xf64, #S6> %0 = call @linalg6(%b) : (tensor<2x3x4xf64, #S6>) -> tensor<2x3x4xf64> call @dump(%0) : (tensor<2x3x4xf64>) -> () %6 = call @convert6(%b) : (tensor<2x3x4xf64, #S6>) -> tensor<2x3x4xf64> call @dump(%6) : (tensor<2x3x4xf64>) -> () bufferization.dealloc_tensor %0 : tensor<2x3x4xf64> bufferization.dealloc_tensor %b : tensor<2x3x4xf64, #S6> bufferization.dealloc_tensor %6 : tensor<2x3x4xf64> return } // // Main driver. // // CHECK-COUNT-12: ( ( ( 0, 0, 3, 63 ), ( 0, 11, 100, 0 ), ( 66, 61, 13, 43 ) ), ( ( 77, 0, 10, 46 ), ( 61, 53, 3, 75 ), ( 0, 22, 18, 0 ) ) ) // func.func @main() { %c0 = arith.constant 0 : index %fileName = call @getTensorFilename(%c0) : (index) -> (!Filename) call @foo1(%fileName) : (!Filename) -> () call @foo2(%fileName) : (!Filename) -> () call @foo3(%fileName) : (!Filename) -> () call @foo4(%fileName) : (!Filename) -> () call @foo5(%fileName) : (!Filename) -> () call @foo6(%fileName) : (!Filename) -> () return } }