//-------------------------------------------------------------------------------------------------- // WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS. // // Set-up that's shared across all tests in this directory. In principle, this // config could be moved to lit.local.cfg. However, there are downstream users that // do not use these LIT config files. Hence why this is kept inline. // // DEFINE: %{sparsifier_opts} = enable-runtime-library=true // DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts} // DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}" // DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}" // DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils // DEFINE: %{run_opts} = -e main -entry-point-result=void // DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs} // DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs} // // DEFINE: %{env} = //-------------------------------------------------------------------------------------------------- // RUN: %{compile} | %{run} | FileCheck %s // // Do the same run, but now with direct IR generation. // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true // RUN: %{compile} | %{run} | FileCheck %s // #AllDense = #sparse_tensor.encoding<{ map = (i, j) -> ( i : dense, j : dense ) }> #AllDenseT = #sparse_tensor.encoding<{ map = (i, j) -> ( j : dense, i : dense ) }> #CSR = #sparse_tensor.encoding<{ map = (i, j) -> ( i : dense, j : compressed ) }> #DCSR = #sparse_tensor.encoding<{ map = (i, j) -> ( i : compressed, j : compressed ) }> #CSC = #sparse_tensor.encoding<{ map = (i, j) -> ( j : dense, i : compressed ) }> #DCSC = #sparse_tensor.encoding<{ map = (i, j) -> ( j : compressed, i : compressed ) }> #BSR = #sparse_tensor.encoding<{ map = (i, j) -> ( i floordiv 2 : compressed, j floordiv 4 : compressed, i mod 2 : dense, j mod 4 : dense ) }> #BSRC = #sparse_tensor.encoding<{ map = (i, j) -> ( i floordiv 2 : compressed, j floordiv 4 : compressed, j mod 4 : dense, i mod 2 : dense ) }> #BSC = #sparse_tensor.encoding<{ map = (i, j) -> ( j floordiv 4 : compressed, i floordiv 2 : compressed, i mod 2 : dense, j mod 4 : dense ) }> #BSCC = #sparse_tensor.encoding<{ map = (i, j) -> ( j floordiv 4 : compressed, i floordiv 2 : compressed, j mod 4 : dense, i mod 2 : dense ) }> #BSR0 = #sparse_tensor.encoding<{ map = (i, j) -> ( i floordiv 2 : dense, j floordiv 4 : compressed, i mod 2 : dense, j mod 4 : dense ) }> #BSC0 = #sparse_tensor.encoding<{ map = (i, j) -> ( j floordiv 4 : dense, i floordiv 2 : compressed, i mod 2 : dense, j mod 4 : dense ) }> #COOAoS = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton) }> #COOSoA = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton(soa)) }> module { // // Main driver that tests sparse tensor storage. // func.func @main() { %x = arith.constant dense <[ [ 1, 0, 2, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 3, 4, 0, 5, 0, 0 ] ]> : tensor<4x8xi32> %XO = sparse_tensor.convert %x : tensor<4x8xi32> to tensor<4x8xi32, #AllDense> %XT = sparse_tensor.convert %x : tensor<4x8xi32> to tensor<4x8xi32, #AllDenseT> // CHECK: ---- Sparse Tensor ---- // CHECK-NEXT: nse = 32 // CHECK-NEXT: dim = ( 4, 8 ) // CHECK-NEXT: lvl = ( 4, 8 ) // CHECK-NEXT: values : ( 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 0, 5, 0, 0, // CHECK-NEXT: ---- sparse_tensor.print %XO : tensor<4x8xi32, #AllDense> // CHECK-NEXT: ---- Sparse Tensor ---- // CHECK-NEXT: nse = 32 // CHECK-NEXT: dim = ( 4, 8 ) // CHECK-NEXT: lvl = ( 8, 4 ) // CHECK-NEXT: values : ( 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, // CHECK-NEXT: ---- sparse_tensor.print %XT : tensor<4x8xi32, #AllDenseT> %a = sparse_tensor.convert %x : tensor<4x8xi32> to tensor<4x8xi32, #CSR> %b = sparse_tensor.convert %x : tensor<4x8xi32> to tensor<4x8xi32, #DCSR> %c = sparse_tensor.convert %x : tensor<4x8xi32> to tensor<4x8xi32, #CSC> %d = sparse_tensor.convert %x : tensor<4x8xi32> to tensor<4x8xi32, #DCSC> %e = sparse_tensor.convert %x : tensor<4x8xi32> to tensor<4x8xi32, #BSR> %f = sparse_tensor.convert %x : tensor<4x8xi32> to tensor<4x8xi32, #BSRC> %g = sparse_tensor.convert %x : tensor<4x8xi32> to tensor<4x8xi32, #BSC> %h = sparse_tensor.convert %x : tensor<4x8xi32> to tensor<4x8xi32, #BSCC> %i = sparse_tensor.convert %x : tensor<4x8xi32> to tensor<4x8xi32, #BSR0> %j = sparse_tensor.convert %x : tensor<4x8xi32> to tensor<4x8xi32, #BSC0> %AoS = sparse_tensor.convert %x : tensor<4x8xi32> to tensor<4x8xi32, #COOAoS> %SoA = sparse_tensor.convert %x : tensor<4x8xi32> to tensor<4x8xi32, #COOSoA> // CHECK-NEXT: ---- Sparse Tensor ---- // CHECK-NEXT: nse = 5 // CHECK-NEXT: dim = ( 4, 8 ) // CHECK-NEXT: lvl = ( 4, 8 ) // CHECK-NEXT: pos[1] : ( 0, 2, 2, 2, 5, // CHECK-NEXT: crd[1] : ( 0, 2, 2, 3, 5, // CHECK-NEXT: values : ( 1, 2, 3, 4, 5, // CHECK-NEXT: ---- sparse_tensor.print %a : tensor<4x8xi32, #CSR> // CHECK-NEXT: ---- Sparse Tensor ---- // CHECK-NEXT: nse = 5 // CHECK-NEXT: dim = ( 4, 8 ) // CHECK-NEXT: lvl = ( 4, 8 ) // CHECK-NEXT: pos[0] : ( 0, 2, // CHECK-NEXT: crd[0] : ( 0, 3, // CHECK-NEXT: pos[1] : ( 0, 2, 5, // CHECK-NEXT: crd[1] : ( 0, 2, 2, 3, 5, // CHECK-NEXT: values : ( 1, 2, 3, 4, 5, // CHECK-NEXT: ---- sparse_tensor.print %b : tensor<4x8xi32, #DCSR> // CHECK-NEXT: ---- Sparse Tensor ---- // CHECK-NEXT: nse = 5 // CHECK-NEXT: dim = ( 4, 8 ) // CHECK-NEXT: lvl = ( 8, 4 ) // CHECK-NEXT: pos[1] : ( 0, 1, 1, 3, 4, 4, 5, 5, 5, // CHECK-NEXT: crd[1] : ( 0, 0, 3, 3, 3, // CHECK-NEXT: values : ( 1, 2, 3, 4, 5, // CHECK-NEXT: ---- sparse_tensor.print %c : tensor<4x8xi32, #CSC> // CHECK-NEXT: ---- Sparse Tensor ---- // CHECK-NEXT: nse = 5 // CHECK-NEXT: dim = ( 4, 8 ) // CHECK-NEXT: lvl = ( 8, 4 ) // CHECK-NEXT: pos[0] : ( 0, 4, // CHECK-NEXT: crd[0] : ( 0, 2, 3, 5, // CHECK-NEXT: pos[1] : ( 0, 1, 3, 4, 5, // CHECK-NEXT: crd[1] : ( 0, 0, 3, 3, 3, // CHECK-NEXT: values : ( 1, 2, 3, 4, 5, // CHECK-NEXT: ---- sparse_tensor.print %d : tensor<4x8xi32, #DCSC> // CHECK-NEXT: ---- Sparse Tensor ---- // CHECK-NEXT: nse = 24 // CHECK-NEXT: dim = ( 4, 8 ) // CHECK-NEXT: lvl = ( 2, 2, 2, 4 ) // CHECK-NEXT: pos[0] : ( 0, 2, // CHECK-NEXT: crd[0] : ( 0, 1, // CHECK-NEXT: pos[1] : ( 0, 1, 3, // CHECK-NEXT: crd[1] : ( 0, 0, 1, // CHECK-NEXT: values : ( 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 0, 0, 0, 0, 0, 5, 0, 0, // CHECK-NEXT: ---- sparse_tensor.print %e : tensor<4x8xi32, #BSR> // CHECK-NEXT: ---- Sparse Tensor ---- // CHECK-NEXT: nse = 24 // CHECK-NEXT: dim = ( 4, 8 ) // CHECK-NEXT: lvl = ( 2, 2, 4, 2 ) // CHECK-NEXT: pos[0] : ( 0, 2, // CHECK-NEXT: crd[0] : ( 0, 1, // CHECK-NEXT: pos[1] : ( 0, 1, 3, // CHECK-NEXT: crd[1] : ( 0, 0, 1, // CHECK-NEXT: values : ( 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 4, 0, 0, 0, 5, 0, 0, 0, 0, // CHECK-NEXT: ---- sparse_tensor.print %f : tensor<4x8xi32, #BSRC> // CHECK-NEXT: ---- Sparse Tensor ---- // CHECK-NEXT: nse = 24 // CHECK-NEXT: dim = ( 4, 8 ) // CHECK-NEXT: lvl = ( 2, 2, 2, 4 ) // CHECK-NEXT: pos[0] : ( 0, 2, // CHECK-NEXT: crd[0] : ( 0, 1, // CHECK-NEXT: pos[1] : ( 0, 2, 3, // CHECK-NEXT: crd[1] : ( 0, 1, 1, // CHECK-NEXT: values : ( 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 0, 0, 0, 0, 0, 5, 0, 0, // CHECK-NEXT: ---- sparse_tensor.print %g : tensor<4x8xi32, #BSC> // CHECK-NEXT: ---- Sparse Tensor ---- // CHECK-NEXT: nse = 24 // CHECK-NEXT: dim = ( 4, 8 ) // CHECK-NEXT: lvl = ( 2, 2, 4, 2 ) // CHECK-NEXT: pos[0] : ( 0, 2, // CHECK-NEXT: crd[0] : ( 0, 1, // CHECK-NEXT: pos[1] : ( 0, 2, 3, // CHECK-NEXT: crd[1] : ( 0, 1, 1, // CHECK-NEXT: values : ( 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 4, 0, 0, 0, 5, 0, 0, 0, 0, // CHECK-NEXT: ---- sparse_tensor.print %h : tensor<4x8xi32, #BSCC> // CHECK-NEXT: ---- Sparse Tensor ---- // CHECK-NEXT: nse = 24 // CHECK-NEXT: dim = ( 4, 8 ) // CHECK-NEXT: lvl = ( 2, 2, 2, 4 ) // CHECK-NEXT: pos[1] : ( 0, 1, 3, // CHECK-NEXT: crd[1] : ( 0, 0, 1, // CHECK-NEXT: values : ( 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 0, 0, 0, 0, 0, 5, 0, 0, // CHECK-NEXT: ---- sparse_tensor.print %i : tensor<4x8xi32, #BSR0> // CHECK-NEXT: ---- Sparse Tensor ---- // CHECK-NEXT: nse = 24 // CHECK-NEXT: dim = ( 4, 8 ) // CHECK-NEXT: lvl = ( 2, 2, 2, 4 ) // CHECK-NEXT: pos[1] : ( 0, 2, 3, // CHECK-NEXT: crd[1] : ( 0, 1, 1, // CHECK-NEXT: values : ( 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 0, 0, 0, 0, 0, 5, 0, 0, // CHECK-NEXT: ---- sparse_tensor.print %j : tensor<4x8xi32, #BSC0> // CHECK-NEXT: ---- Sparse Tensor ---- // CHECK-NEXT: nse = 5 // CHECK-NEXT: dim = ( 4, 8 ) // CHECK-NEXT: lvl = ( 4, 8 ) // CHECK-NEXT: pos[0] : ( 0, 5, // CHECK-NEXT: crd[0] : ( 0, 0, 0, 2, 3, 2, 3, 3, 3, 5, // CHECK-NEXT: values : ( 1, 2, 3, 4, 5, // CHECK-NEXT: ---- sparse_tensor.print %AoS : tensor<4x8xi32, #COOAoS> // CHECK-NEXT: ---- Sparse Tensor ---- // CHECK-NEXT: nse = 5 // CHECK-NEXT: dim = ( 4, 8 ) // CHECK-NEXT: lvl = ( 4, 8 ) // CHECK-NEXT: pos[0] : ( 0, 5, // CHECK-NEXT: crd[0] : ( 0, 0, 3, 3, 3, // CHECK-NEXT: crd[1] : ( 0, 2, 2, 3, 5, // CHECK-NEXT: values : ( 1, 2, 3, 4, 5, // CHECK-NEXT: ---- sparse_tensor.print %SoA : tensor<4x8xi32, #COOSoA> // Release the resources. bufferization.dealloc_tensor %XO : tensor<4x8xi32, #AllDense> bufferization.dealloc_tensor %XT : tensor<4x8xi32, #AllDenseT> bufferization.dealloc_tensor %a : tensor<4x8xi32, #CSR> bufferization.dealloc_tensor %b : tensor<4x8xi32, #DCSR> bufferization.dealloc_tensor %c : tensor<4x8xi32, #CSC> bufferization.dealloc_tensor %d : tensor<4x8xi32, #DCSC> bufferization.dealloc_tensor %e : tensor<4x8xi32, #BSR> bufferization.dealloc_tensor %f : tensor<4x8xi32, #BSRC> bufferization.dealloc_tensor %g : tensor<4x8xi32, #BSC> bufferization.dealloc_tensor %h : tensor<4x8xi32, #BSCC> bufferization.dealloc_tensor %i : tensor<4x8xi32, #BSR0> bufferization.dealloc_tensor %j : tensor<4x8xi32, #BSC0> bufferization.dealloc_tensor %AoS : tensor<4x8xi32, #COOAoS> bufferization.dealloc_tensor %SoA : tensor<4x8xi32, #COOSoA> return } }