//-------------------------------------------------------------------------------------------------- // WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS. // // Set-up that's shared across all tests in this directory. In principle, this // config could be moved to lit.local.cfg. However, there are downstream users that // do not use these LIT config files. Hence why this is kept inline. // // DEFINE: %{sparsifier_opts} = enable-runtime-library=true // DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts} // DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}" // DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}" // DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils // DEFINE: %{run_opts} = -e main -entry-point-result=void // DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs} // DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs} // // DEFINE: %{env} = //-------------------------------------------------------------------------------------------------- // RUN: %{compile} | %{run} | FileCheck %s // // Do the same run, but now with direct IR generation. // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false // RUN: %{compile} | %{run} | FileCheck %s // // Do the same run, but now with direct IR generation and vectorization. // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true // RUN: %{compile} | %{run} | FileCheck %s // // Do the same run, but now with direct IR generation and VLA vectorization. // RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %} // Reduction in this file _are_ supported by the AArch64 SVE backend #SV = #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed) }> #trait_reduction = { indexing_maps = [ affine_map<(i) -> (i)>, // a affine_map<(i) -> ()> // x (scalar out) ], iterator_types = ["reduction"], doc = "x += OPER_i a(i)" } // An example of vector reductions. module { func.func @sum_reduction_i32(%arga: tensor<32xi32, #SV>, %argx: tensor) -> tensor { %0 = linalg.generic #trait_reduction ins(%arga: tensor<32xi32, #SV>) outs(%argx: tensor) { ^bb(%a: i32, %x: i32): %0 = arith.addi %x, %a : i32 linalg.yield %0 : i32 } -> tensor return %0 : tensor } func.func @sum_reduction_f32(%arga: tensor<32xf32, #SV>, %argx: tensor) -> tensor { %0 = linalg.generic #trait_reduction ins(%arga: tensor<32xf32, #SV>) outs(%argx: tensor) { ^bb(%a: f32, %x: f32): %0 = arith.addf %x, %a : f32 linalg.yield %0 : f32 } -> tensor return %0 : tensor } func.func @or_reduction_i32(%arga: tensor<32xi32, #SV>, %argx: tensor) -> tensor { %0 = linalg.generic #trait_reduction ins(%arga: tensor<32xi32, #SV>) outs(%argx: tensor) { ^bb(%a: i32, %x: i32): %0 = arith.ori %x, %a : i32 linalg.yield %0 : i32 } -> tensor return %0 : tensor } func.func @xor_reduction_i32(%arga: tensor<32xi32, #SV>, %argx: tensor) -> tensor { %0 = linalg.generic #trait_reduction ins(%arga: tensor<32xi32, #SV>) outs(%argx: tensor) { ^bb(%a: i32, %x: i32): %0 = arith.xori %x, %a : i32 linalg.yield %0 : i32 } -> tensor return %0 : tensor } func.func @dump_i32(%arg0 : tensor) { %v = tensor.extract %arg0[] : tensor vector.print %v : i32 return } func.func @dump_f32(%arg0 : tensor) { %v = tensor.extract %arg0[] : tensor vector.print %v : f32 return } func.func @main() { %ri = arith.constant dense< 7 > : tensor %rf = arith.constant dense< 2.0 > : tensor %c_0_i32 = arith.constant dense<[ 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0 ]> : tensor<32xi32> %c_0_f32 = arith.constant dense<[ 0.0, 1.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 9.0 ]> : tensor<32xf32> // Convert constants to annotated tensors. %sparse_input_i32 = sparse_tensor.convert %c_0_i32 : tensor<32xi32> to tensor<32xi32, #SV> %sparse_input_f32 = sparse_tensor.convert %c_0_f32 : tensor<32xf32> to tensor<32xf32, #SV> // Call the kernels. %0 = call @sum_reduction_i32(%sparse_input_i32, %ri) : (tensor<32xi32, #SV>, tensor) -> tensor %1 = call @sum_reduction_f32(%sparse_input_f32, %rf) : (tensor<32xf32, #SV>, tensor) -> tensor %2 = call @or_reduction_i32(%sparse_input_i32, %ri) : (tensor<32xi32, #SV>, tensor) -> tensor %3 = call @xor_reduction_i32(%sparse_input_i32, %ri) : (tensor<32xi32, #SV>, tensor) -> tensor // Verify results. // // CHECK: 26 // CHECK: 27.5 // CHECK: 15 // CHECK: 10 // call @dump_i32(%0) : (tensor) -> () call @dump_f32(%1) : (tensor) -> () call @dump_i32(%2) : (tensor) -> () call @dump_i32(%3) : (tensor) -> () // Release the resources. bufferization.dealloc_tensor %sparse_input_i32 : tensor<32xi32, #SV> bufferization.dealloc_tensor %sparse_input_f32 : tensor<32xf32, #SV> bufferization.dealloc_tensor %0 : tensor bufferization.dealloc_tensor %1 : tensor bufferization.dealloc_tensor %2 : tensor bufferization.dealloc_tensor %3 : tensor return } }