//-------------------------------------------------------------------------------------------------- // WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS. // // Set-up that's shared across all tests in this directory. In principle, this // config could be moved to lit.local.cfg. However, there are downstream users that // do not use these LIT config files. Hence why this is kept inline. // // DEFINE: %{sparsifier_opts} = enable-runtime-library=true // DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts} // DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}" // DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}" // DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils // DEFINE: %{run_opts} = -e main -entry-point-result=void // DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs} // DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs} // // DEFINE: %{env} = //-------------------------------------------------------------------------------------------------- // RUN: %{compile} | %{run} | FileCheck %s // // Do the same run, but now with direct IR generation. // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false // RUN: %{compile} | %{run} | FileCheck %s // // Do the same run, but now with vectorization. // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=4 // RUN: %{compile} | %{run} | FileCheck %s // // Do the same run, but now with VLA vectorization. // RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %} #CSR = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed) }> #trait_scale = { indexing_maps = [ affine_map<(i,j) -> (i,j)> // X (out) ], iterator_types = ["parallel", "parallel"], doc = "X(i,j) = X(i,j) * 2" } // // Integration test that lowers a kernel annotated as sparse to actual sparse // code, initializes a matching sparse storage scheme from a dense tensor, // and runs the resulting code with the JIT compiler. // module { // // A kernel that scales a sparse matrix A by a factor of 2.0. // func.func @sparse_scale(%argx: tensor<8x8xf32, #CSR>) -> tensor<8x8xf32, #CSR> { %c = arith.constant 2.0 : f32 %0 = linalg.generic #trait_scale outs(%argx: tensor<8x8xf32, #CSR>) { ^bb(%x: f32): %1 = arith.mulf %x, %c : f32 linalg.yield %1 : f32 } -> tensor<8x8xf32, #CSR> return %0 : tensor<8x8xf32, #CSR> } // // Main driver that converts a dense tensor into a sparse tensor // and then calls the sparse scaling kernel with the sparse tensor // as input argument. // func.func @main() { %c0 = arith.constant 0 : index %f0 = arith.constant 0.0 : f32 // Initialize a dense tensor. %0 = arith.constant dense<[ [1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0], [0.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 5.0, 0.0, 0.0, 0.0], [0.0, 1.0, 1.0, 0.0, 0.0, 6.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 7.0, 1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 8.0] ]> : tensor<8x8xf32> // Convert dense tensor to sparse tensor and call sparse kernel. %1 = sparse_tensor.convert %0 : tensor<8x8xf32> to tensor<8x8xf32, #CSR> %2 = call @sparse_scale(%1) : (tensor<8x8xf32, #CSR>) -> tensor<8x8xf32, #CSR> // Print the resulting compacted values for verification. // // CHECK: ---- Sparse Tensor ---- // CHECK-NEXT: nse = 16 // CHECK-NEXT: dim = ( 8, 8 ) // CHECK-NEXT: lvl = ( 8, 8 ) // CHECK-NEXT: pos[1] : ( 0, 3, 4, 5, 6, 8, 11, 14, 16 // CHECK-NEXT: crd[1] : ( 0, 2, 7, 1, 2, 3, 1, 4, 1, 2, 5, 2, 6, 7, 2, 7 // CHECK-NEXT: values : ( 2, 2, 2, 4, 6, 8, 2, 10, 2, 2, 12, 2, 14, 2, 2, 16 // CHECK-NEXT: ---- // sparse_tensor.print %2 : tensor<8x8xf32, #CSR> // Release the resources. bufferization.dealloc_tensor %1 : tensor<8x8xf32, #CSR> return } }