//-------------------------------------------------------------------------------------------------- // WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS. // // Set-up that's shared across all tests in this directory. In principle, this // config could be moved to lit.local.cfg. However, there are downstream users that // do not use these LIT config files. Hence why this is kept inline. // // DEFINE: %{sparsifier_opts} = enable-runtime-library=true // DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts} // DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}" // DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}" // DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils // DEFINE: %{run_opts} = -e main -entry-point-result=void // DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs} // DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs} // // DEFINE: %{env} = //-------------------------------------------------------------------------------------------------- // RUN: %{compile} | %{run} | FileCheck %s // // Do the same run, but now with direct IR generation. // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true // RUN: %{compile} | %{run} | FileCheck %s // // Do the same run, but now with vectorization. // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=4 enable-buffer-initialization=true // RUN: %{compile} | %{run} | FileCheck %s // // Do the same run, but now with VLA vectorization. // RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %} #SparseVector = #sparse_tensor.encoding<{map = (d0) -> (d0 : compressed)}> #CSR = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : dense, d1 : compressed)}> #CSC = #sparse_tensor.encoding<{ map = (d0, d1) -> (d1 : dense, d0 : compressed) }> // // Traits for tensor operations. // #trait_vec_select = { indexing_maps = [ affine_map<(i) -> (i)>, // A affine_map<(i) -> (i)> // C (out) ], iterator_types = ["parallel"] } #trait_mat_select = { indexing_maps = [ affine_map<(i,j) -> (i,j)>, // A (in) affine_map<(i,j) -> (i,j)> // X (out) ], iterator_types = ["parallel", "parallel"] } module { func.func @vecSelect(%arga: tensor) -> tensor { %c0 = arith.constant 0 : index %cf1 = arith.constant 1.0 : f64 %d0 = tensor.dim %arga, %c0 : tensor %xv = tensor.empty(%d0): tensor %0 = linalg.generic #trait_vec_select ins(%arga: tensor) outs(%xv: tensor) { ^bb(%a: f64, %b: f64): %1 = sparse_tensor.select %a : f64 { ^bb0(%x: f64): %keep = arith.cmpf "oge", %x, %cf1 : f64 sparse_tensor.yield %keep : i1 } linalg.yield %1 : f64 } -> tensor return %0 : tensor } func.func @matUpperTriangle(%arga: tensor) -> tensor { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %d0 = tensor.dim %arga, %c0 : tensor %d1 = tensor.dim %arga, %c1 : tensor %xv = tensor.empty(%d0, %d1): tensor %0 = linalg.generic #trait_mat_select ins(%arga: tensor) outs(%xv: tensor) { ^bb(%a: f64, %b: f64): %row = linalg.index 0 : index %col = linalg.index 1 : index %1 = sparse_tensor.select %a : f64 { ^bb0(%x: f64): %keep = arith.cmpi "ugt", %col, %row : index sparse_tensor.yield %keep : i1 } linalg.yield %1 : f64 } -> tensor return %0 : tensor } // Driver method to call and verify vector kernels. func.func @main() { %c0 = arith.constant 0 : index // Setup sparse matrices. %v1 = arith.constant sparse< [ [1], [3], [5], [7], [9] ], [ 1.0, 2.0, -4.0, 0.0, 5.0 ] > : tensor<10xf64> %m1 = arith.constant sparse< [ [0, 3], [1, 4], [2, 1], [2, 3], [3, 3], [3, 4], [4, 2] ], [ 1., 2., 3., 4., 5., 6., 7.] > : tensor<5x5xf64> %sv1 = sparse_tensor.convert %v1 : tensor<10xf64> to tensor %sm1 = sparse_tensor.convert %m1 : tensor<5x5xf64> to tensor // Call sparse matrix kernels. %1 = call @vecSelect(%sv1) : (tensor) -> tensor %2 = call @matUpperTriangle(%sm1) : (tensor) -> tensor // // Verify the results. // // CHECK: ---- Sparse Tensor ---- // CHECK-NEXT: nse = 5 // CHECK-NEXT: dim = ( 10 ) // CHECK-NEXT: lvl = ( 10 ) // CHECK-NEXT: pos[0] : ( 0, 5 // CHECK-NEXT: crd[0] : ( 1, 3, 5, 7, 9 // CHECK-NEXT: values : ( 1, 2, -4, 0, 5 // CHECK-NEXT: ---- // CHECK: ---- Sparse Tensor ---- // CHECK-NEXT: nse = 7 // CHECK-NEXT: dim = ( 5, 5 ) // CHECK-NEXT: lvl = ( 5, 5 ) // CHECK-NEXT: pos[1] : ( 0, 1, 2, 4, 6, 7 // CHECK-NEXT: crd[1] : ( 3, 4, 1, 3, 3, 4, 2 // CHECK-NEXT: values : ( 1, 2, 3, 4, 5, 6, 7 // CHECK-NEXT: ---- // CHECK: ---- Sparse Tensor ---- // CHECK-NEXT: nse = 3 // CHECK-NEXT: dim = ( 10 ) // CHECK-NEXT: lvl = ( 10 ) // CHECK-NEXT: pos[0] : ( 0, 3 // CHECK-NEXT: crd[0] : ( 1, 3, 9 // CHECK-NEXT: values : ( 1, 2, 5 // CHECK-NEXT: ---- // CHECK: ---- Sparse Tensor ---- // CHECK-NEXT: nse = 4 // CHECK-NEXT: dim = ( 5, 5 ) // CHECK-NEXT: lvl = ( 5, 5 ) // CHECK-NEXT: pos[1] : ( 0, 1, 2, 3, 4, 4 // CHECK-NEXT: crd[1] : ( 3, 4, 3, 4 // CHECK-NEXT: values : ( 1, 2, 4, 6 // CHECK-NEXT: ---- // sparse_tensor.print %sv1 : tensor sparse_tensor.print %sm1 : tensor sparse_tensor.print %1 : tensor sparse_tensor.print %2 : tensor // Release the resources. bufferization.dealloc_tensor %sv1 : tensor bufferization.dealloc_tensor %sm1 : tensor bufferization.dealloc_tensor %1 : tensor bufferization.dealloc_tensor %2 : tensor return } }