//-------------------------------------------------------------------------------------------------- // WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS. // // Set-up that's shared across all tests in this directory. In principle, this // config could be moved to lit.local.cfg. However, there are downstream users that // do not use these LIT config files. Hence why this is kept inline. // // DEFINE: %{sparsifier_opts} = enable-runtime-library=true // DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts} // DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}" // DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}" // DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils // DEFINE: %{run_opts} = -e main -entry-point-result=void // DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs} // DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs} // // DEFINE: %{env} = //-------------------------------------------------------------------------------------------------- // REDEFINE: %{env} = TENSOR0="%mlir_src_dir/test/Integration/data/wide.mtx" // RUN: %{compile} | env %{env} %{run} | FileCheck %s // // Do the same run, but now with direct IR generation. // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false // RUN: %{compile} | env %{env} %{run} | FileCheck %s // // Do the same run, but now with vectorization. // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true // RUN: %{compile} | env %{env} %{run} | FileCheck %s // // Do the same run, but now with VLA vectorization. // RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | env %{env} %{run_sve} | FileCheck %s %} !Filename = !llvm.ptr #SparseMatrix = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed) }> #spmm = { indexing_maps = [ affine_map<(i,j,k) -> (i,k)>, // A affine_map<(i,j,k) -> (k,j)>, // B affine_map<(i,j,k) -> (i,j)> // X (out) ], iterator_types = ["parallel", "parallel", "reduction"], doc = "X(i,j) += A(i,k) * B(k,j)" } // // Integration test that lowers a kernel annotated as sparse to // actual sparse code, initializes a matching sparse storage scheme // from file, and runs the resulting code with the JIT compiler. // module { // // A kernel that multiplies a sparse matrix A with a dense matrix B // into a dense matrix X. // func.func @kernel_spmm(%arga: tensor, %argb: tensor, %argx: tensor) -> tensor { %0 = linalg.generic #spmm ins(%arga, %argb: tensor, tensor) outs(%argx: tensor) { ^bb(%a: f64, %b: f64, %x: f64): %0 = arith.mulf %a, %b : f64 %1 = arith.addf %x, %0 : f64 linalg.yield %1 : f64 } -> tensor return %0 : tensor } func.func private @getTensorFilename(index) -> (!Filename) // // Main driver that reads matrix from file and calls the sparse kernel. // func.func @main() { %i0 = arith.constant 0.0 : f64 %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %c4 = arith.constant 4 : index %c256 = arith.constant 256 : index // Read the sparse matrix from file, construct sparse storage. %fileName = call @getTensorFilename(%c0) : (index) -> (!Filename) %a = sparse_tensor.new %fileName : !Filename to tensor // Initialize dense tensors. %b = tensor.generate %c256, %c4 { ^bb0(%i : index, %j : index): %k0 = arith.muli %i, %c4 : index %k1 = arith.addi %j, %k0 : index %k2 = arith.index_cast %k1 : index to i32 %k = arith.sitofp %k2 : i32 to f64 tensor.yield %k : f64 } : tensor %x = tensor.generate %c4, %c4 { ^bb0(%i : index, %j : index): tensor.yield %i0 : f64 } : tensor // Call kernel. %0 = call @kernel_spmm(%a, %b, %x) : (tensor, tensor, tensor) -> tensor // Print the result for verification. // // CHECK: ( ( 3548, 3550, 3552, 3554 ), ( 6052, 6053, 6054, 6055 ), ( -56, -63, -70, -77 ), ( -13704, -13709, -13714, -13719 ) ) // %v = vector.transfer_read %0[%c0, %c0], %i0: tensor, vector<4x4xf64> vector.print %v : vector<4x4xf64> // Release the resources. bufferization.dealloc_tensor %a : tensor bufferization.dealloc_tensor %b : tensor bufferization.dealloc_tensor %0 : tensor return } }