//-------------------------------------------------------------------------------------------------- // WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS. // // Set-up that's shared across all tests in this directory. In principle, this // config could be moved to lit.local.cfg. However, there are downstream users that // do not use these LIT config files. Hence why this is kept inline. // // DEFINE: %{sparsifier_opts} = enable-runtime-library=true // DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts} // DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}" // DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}" // DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils // DEFINE: %{run_opts} = -e main -entry-point-result=void // DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs} // DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs} // // DEFINE: %{env} = //-------------------------------------------------------------------------------------------------- // REDEFINE: %{env} = TENSOR0=%mlir_src_dir/test/Integration/data/test_symmetric.mtx // RUN: %{compile} | env %{env} %{run} | FileCheck %s // // Do the same run, but now with direct IR generation. // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false // RUN: %{compile} | env %{env} %{run} | FileCheck %s // // Do the same run, but now with vectorization. // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true // RUN: %{compile} | env %{env} %{run} | FileCheck %s // // Do the same run, but now with VLA vectorization. // RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | env %{env} %{run_sve} | FileCheck %s %} // TODO: The test currently only operates on the triangular part of the // symmetric matrix. !Filename = !llvm.ptr #SparseMatrix = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : compressed, d1 : compressed) }> #trait_sum_reduce = { indexing_maps = [ affine_map<(i,j) -> (i,j)>, // A affine_map<(i,j) -> ()> // x (out) ], iterator_types = ["reduction", "reduction"], doc = "x += A(i,j)" } // // Integration test that lowers a kernel annotated as sparse to // actual sparse code, initializes a matching sparse storage scheme // from file, and runs the resulting code with the JIT compiler. // module { // // A kernel that sum-reduces a matrix to a single scalar. // func.func @kernel_sum_reduce(%arga: tensor, %argx: tensor) -> tensor { %0 = linalg.generic #trait_sum_reduce ins(%arga: tensor) outs(%argx: tensor) { ^bb(%a: f64, %x: f64): %0 = arith.addf %x, %a : f64 linalg.yield %0 : f64 } -> tensor return %0 : tensor } func.func private @getTensorFilename(index) -> (!Filename) // // Main driver that reads matrix from file and calls the sparse kernel. // func.func @main() { %d0 = arith.constant 0.0 : f64 %c0 = arith.constant 0 : index // Setup memory for a single reduction scalar, // initialized to zero. %x = tensor.from_elements %d0 : tensor // Read the sparse matrix from file, construct sparse storage. %fileName = call @getTensorFilename(%c0) : (index) -> (!Filename) %a = sparse_tensor.new %fileName : !Filename to tensor // Call the kernel. %0 = call @kernel_sum_reduce(%a, %x) : (tensor, tensor) -> tensor // Print the result for verification. // // CHECK: 24.1 // %v = tensor.extract %0[] : tensor vector.print %v : f64 // Release the resources. bufferization.dealloc_tensor %a : tensor bufferization.dealloc_tensor %0 : tensor return } }