//-------------------------------------------------------------------------------------------------- // WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS. // // Set-up that's shared across all tests in this directory. In principle, this // config could be moved to lit.local.cfg. However, there are downstream users that // do not use these LIT config files. Hence why this is kept inline. // // DEFINE: %{sparsifier_opts} = enable-runtime-library=true // DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts} // DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}" // DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}" // DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils // DEFINE: %{run_opts} = -e main -entry-point-result=void // DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs} // DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs} // // DEFINE: %{env} = //-------------------------------------------------------------------------------------------------- // RUN: %{compile} | %{run} | FileCheck %s // // Do the same run, but now with direct IR generation. // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false // RUN: %{compile} | %{run} | FileCheck %s // // Do the same run, but now with vectorization. // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true // RUN: %{compile} | %{run} | FileCheck %s // // Do the same run, but now with VLA vectorization. // RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %} // Current fails for SVE, see https://github.com/llvm/llvm-project/issues/60626 // UNSUPPORTED: target=aarch64{{.*}} #SparseVector = #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed) }> #trait_op = { indexing_maps = [ affine_map<(i) -> (i)> // X (out) ], iterator_types = ["parallel"], doc = "X(i) = OP X(i)" } module { // Performs zero-preserving math to sparse vector. func.func @sparse_tanh(%vec: tensor) -> tensor { %0 = linalg.generic #trait_op outs(%vec: tensor) { ^bb(%x: f64): %1 = math.tanh %x : f64 linalg.yield %1 : f64 } -> tensor return %0 : tensor } // Driver method to call and verify vector kernels. func.func @main() { // Setup sparse vector. %v1 = arith.constant sparse< [ [0], [3], [11], [17], [20], [21], [28], [29], [31] ], [ -1.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 100.0 ] > : tensor<32xf64> %sv1 = sparse_tensor.convert %v1 : tensor<32xf64> to tensor // Call sparse vector kernel. %0 = call @sparse_tanh(%sv1) : (tensor) -> tensor // // Verify the results (within some precision). // // CHECK: ---- Sparse Tensor ---- // CHECK-NEXT: nse = 9 // CHECK-NEXT: dim = ( 32 ) // CHECK-NEXT: lvl = ( 32 ) // CHECK-NEXT: pos[0] : ( 0, 9 // CHECK-NEXT: crd[0] : ( 0, 3, 11, 17, 20, 21, 28, 29, 31 // CHECK-NEXT: values : ({{ -0.761[0-9]*, 0.761[0-9]*, 0.96[0-9]*, 0.99[0-9]*, 0.99[0-9]*, 0.99[0-9]*, 0.99[0-9]*, 0.99[0-9]*, 1}} // CHECK-NEXT: ---- // sparse_tensor.print %0 : tensor // Release the resources. bufferization.dealloc_tensor %sv1 : tensor return } }