//-------------------------------------------------------------------------------------------------- // WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS. // // Set-up that's shared across all tests in this directory. In principle, this // config could be moved to lit.local.cfg. However, there are downstream users that // do not use these LIT config files. Hence why this is kept inline. // // DEFINE: %{sparsifier_opts} = enable-runtime-library=true // DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts} // DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}" // DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}" // DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils // DEFINE: %{run_opts} = -e main -entry-point-result=void // DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs} // DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs} // // DEFINE: %{env} = //-------------------------------------------------------------------------------------------------- // RUN: %{compile} | %{run} | FileCheck %s // // Do the same run, but now with direct IR generation. // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true // RUN: %{compile} | %{run} | FileCheck %s // // Do the same run, but now with vectorization. // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true vl=2 reassociate-fp-reductions=true enable-index-optimizations=true // RUN: %{compile} | %{run} | FileCheck %s // // Do the same run, but now with VLA vectorization. // RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %} #DCSR = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : compressed, d1 : compressed) }> #DCSC = #sparse_tensor.encoding<{ map = (d0, d1) -> (d1 : compressed, d0 : compressed) }> #transpose_trait = { indexing_maps = [ affine_map<(i,j) -> (j,i)>, // A affine_map<(i,j) -> (i,j)> // X ], iterator_types = ["parallel", "parallel"], doc = "X(i,j) = A(j,i)" } module { // // Transposing a sparse row-wise matrix into another sparse row-wise // matrix introduces a cycle in the iteration graph. This complication // can be avoided by manually inserting a conversion of the incoming // matrix into a sparse column-wise matrix first. // func.func @sparse_transpose(%arga: tensor<3x4xf64, #DCSR>) -> tensor<4x3xf64, #DCSR> { %t = sparse_tensor.convert %arga : tensor<3x4xf64, #DCSR> to tensor<3x4xf64, #DCSC> %i = tensor.empty() : tensor<4x3xf64, #DCSR> %0 = linalg.generic #transpose_trait ins(%t: tensor<3x4xf64, #DCSC>) outs(%i: tensor<4x3xf64, #DCSR>) { ^bb(%a: f64, %x: f64): linalg.yield %a : f64 } -> tensor<4x3xf64, #DCSR> bufferization.dealloc_tensor %t : tensor<3x4xf64, #DCSC> return %0 : tensor<4x3xf64, #DCSR> } // // However, even better, the sparsifier is able to insert such a // conversion automatically to resolve a cycle in the iteration graph! // func.func @sparse_transpose_auto(%arga: tensor<3x4xf64, #DCSR>) -> tensor<4x3xf64, #DCSR> { %i = tensor.empty() : tensor<4x3xf64, #DCSR> %0 = linalg.generic #transpose_trait ins(%arga: tensor<3x4xf64, #DCSR>) outs(%i: tensor<4x3xf64, #DCSR>) { ^bb(%a: f64, %x: f64): linalg.yield %a : f64 } -> tensor<4x3xf64, #DCSR> return %0 : tensor<4x3xf64, #DCSR> } // // Main driver. // func.func @main() { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %c4 = arith.constant 4 : index %du = arith.constant 0.0 : f64 // Setup input sparse matrix from compressed constant. %d = arith.constant dense <[ [ 1.1, 1.2, 0.0, 1.4 ], [ 0.0, 0.0, 0.0, 0.0 ], [ 3.1, 0.0, 3.3, 3.4 ] ]> : tensor<3x4xf64> %a = sparse_tensor.convert %d : tensor<3x4xf64> to tensor<3x4xf64, #DCSR> // Call the kernels. %0 = call @sparse_transpose(%a) : (tensor<3x4xf64, #DCSR>) -> tensor<4x3xf64, #DCSR> %1 = call @sparse_transpose_auto(%a) : (tensor<3x4xf64, #DCSR>) -> tensor<4x3xf64, #DCSR> // // Verify result. // // CHECK: ---- Sparse Tensor ---- // CHECK-NEXT: nse = 6 // CHECK-NEXT: dim = ( 4, 3 ) // CHECK-NEXT: lvl = ( 4, 3 ) // CHECK-NEXT: pos[0] : ( 0, 4 // CHECK-NEXT: crd[0] : ( 0, 1, 2, 3 // CHECK-NEXT: pos[1] : ( 0, 2, 3, 4, 6 // CHECK-NEXT: crd[1] : ( 0, 2, 0, 2, 0, 2 // CHECK-NEXT: values : ( 1.1, 3.1, 1.2, 3.3, 1.4, 3.4 // CHECK-NEXT: ---- // CHECK: ---- Sparse Tensor ---- // CHECK-NEXT: nse = 6 // CHECK-NEXT: dim = ( 4, 3 ) // CHECK-NEXT: lvl = ( 4, 3 ) // CHECK-NEXT: pos[0] : ( 0, 4 // CHECK-NEXT: crd[0] : ( 0, 1, 2, 3 // CHECK-NEXT: pos[1] : ( 0, 2, 3, 4, 6 // CHECK-NEXT: crd[1] : ( 0, 2, 0, 2, 0, 2 // CHECK-NEXT: values : ( 1.1, 3.1, 1.2, 3.3, 1.4, 3.4 // CHECK-NEXT: ---- // sparse_tensor.print %0 : tensor<4x3xf64, #DCSR> sparse_tensor.print %1 : tensor<4x3xf64, #DCSR> // Release resources. bufferization.dealloc_tensor %a : tensor<3x4xf64, #DCSR> bufferization.dealloc_tensor %0 : tensor<4x3xf64, #DCSR> bufferization.dealloc_tensor %1 : tensor<4x3xf64, #DCSR> return } }