// // NOTE: this test requires gpu-sm80 // // RUN: mlir-opt %s \ // RUN: --sparsifier="enable-runtime-library=false parallelization-strategy=dense-outer-loop gpu-triple=nvptx64-nvidia-cuda gpu-chip=sm_80 gpu-features=+ptx71 gpu-format=%gpu_compilation_format" \ // RUN: | mlir-cpu-runner \ // RUN: --shared-libs=%mlir_cuda_runtime \ // RUN: --shared-libs=%mlir_c_runner_utils \ // RUN: --e main --entry-point-result=void \ // RUN: | FileCheck %s #CSR = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed) }> module { // Compute matrix vector y = Ax func.func @matvec(%A: tensor<1024x64xf64, #CSR>, %x: tensor<64xf64>, %y_in: tensor<1024xf64>) -> tensor<1024xf64> { %y_out = linalg.matvec ins(%A, %x: tensor<1024x64xf64, #CSR>, tensor<64xf64>) outs(%y_in: tensor<1024xf64>) -> tensor<1024xf64> return %y_out : tensor<1024xf64> } memref.global "private" constant @__constant_64xf64 : memref<64xf64> = dense<1.000000e+00> {alignment = 64 : i64} func.func @main() { %f0 = arith.constant 0.0 : f64 %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index // Stress test with a dense matrix DA. %DA = tensor.generate { ^bb0(%i: index, %j: index): %k = arith.addi %i, %j : index %l = arith.index_cast %k : index to i64 %f = arith.uitofp %l : i64 to f64 tensor.yield %f : f64 } : tensor<1024x64xf64> // Convert to a "sparse" 1024 x 64 matrix A. %A = sparse_tensor.convert %DA : tensor<1024x64xf64> to tensor<1024x64xf64, #CSR> // Initialize dense vector to 1024 zeros. %y = tensor.generate { ^bb0(%i : index): tensor.yield %f0 : f64 } : tensor<1024xf64> // Call the kernel with an vector taken from global memory. %xbuf = memref.get_global @__constant_64xf64 : memref<64xf64> %x = bufferization.to_tensor %xbuf restrict : memref<64xf64> %0 = call @matvec(%A, %x, %y) : (tensor<1024x64xf64, #CSR>, tensor<64xf64>, tensor<1024xf64>) -> tensor<1024xf64> // // Sanity check on results. // // CHECK: ( 2016, 2080, 2144, 2208, 2272, 2336, 2400, 2464, 2528, 2592, 2656, 2720, 2784, 2848, 2912, 2976, 3040, 3104, 3168, 3232, 3296, 3360, 3424, 3488, 3552, 3616, 3680, 3744, 3808, 3872, 3936, 4000, 4064, 4128, 4192, 4256, 4320, 4384, 4448, 4512, 4576, 4640, 4704, 4768, 4832, 4896, 4960, 5024, 5088, 5152, 5216, 5280, 5344, 5408, 5472, 5536, 5600, 5664, 5728, 5792, 5856, 5920, 5984, 6048 ) // %pb0 = vector.transfer_read %0[%c0], %f0 : tensor<1024xf64>, vector<64xf64> vector.print %pb0 : vector<64xf64> // Release the resources. bufferization.dealloc_tensor %A : tensor<1024x64xf64, #CSR> return } }