// NOTE: this test requires gpu-sm80 // // DEFINE: %{compile} = mlir-opt %s \ // DEFINE: --sparsifier="enable-gpu-libgen gpu-triple=nvptx64-nvidia-cuda gpu-chip=sm_80 gpu-features=+ptx71 gpu-format=%gpu_compilation_format // DEFINE: %{run} = mlir-cpu-runner \ // DEFINE: --shared-libs=%mlir_cuda_runtime \ // DEFINE: --shared-libs=%mlir_c_runner_utils \ // DEFINE: --e main --entry-point-result=void \ // DEFINE: | FileCheck %s // // with RT lib (SoA COO): // // RUN: %{compile} enable-runtime-library=true" | %{run} // // without RT lib (AoS COO): note, may fall back to CPU // // RUN: %{compile} enable-runtime-library=false" | %{run} #SortedCOO = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton) }> #CSR = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed), posWidth = 32, crdWidth = 32 }> #CSC = #sparse_tensor.encoding<{ map = (d0, d1) -> (d1 : dense, d0 : compressed), posWidth = 64, crdWidth = 64 }> module { llvm.func @mgpuCreateSparseEnv() llvm.func @mgpuDestroySparseEnv() // Compute matrix vector y = Ax on COO with default index coordinates. func.func @matvecCOO(%A: tensor, %x: tensor, %y_in: tensor) -> tensor { %y_out = linalg.matvec ins(%A, %x: tensor, tensor) outs(%y_in: tensor) -> tensor return %y_out : tensor } // Compute matrix vector y = Ax on CSR with 32-bit positions and coordinates. func.func @matvecCSR(%A: tensor, %x: tensor, %y_in: tensor) -> tensor { %y_out = linalg.matvec ins(%A, %x: tensor, tensor) outs(%y_in: tensor) -> tensor return %y_out : tensor } // Compute matrix vector y = Ax on CSC with 64-bit positions and coordinates. func.func @matvecCSC(%A: tensor, %x: tensor, %y_in: tensor) -> tensor { %y_out = linalg.matvec ins(%A, %x: tensor, tensor) outs(%y_in: tensor) -> tensor return %y_out : tensor } func.func @main() { llvm.call @mgpuCreateSparseEnv() : () -> () %f0 = arith.constant 0.0 : f64 %f1 = arith.constant 1.0 : f64 %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index // Stress test with a dense matrix DA. %DA = tensor.generate { ^bb0(%i: index, %j: index): %k = arith.addi %i, %j : index %l = arith.index_cast %k : index to i64 %f = arith.uitofp %l : i64 to f64 tensor.yield %f : f64 } : tensor<64x64xf64> // Convert to a "sparse" m x n matrix A. %Acoo = sparse_tensor.convert %DA : tensor<64x64xf64> to tensor %Acsr = sparse_tensor.convert %DA : tensor<64x64xf64> to tensor %Acsc = sparse_tensor.convert %DA : tensor<64x64xf64> to tensor // Initialize dense vector with n elements: // (1, 2, 3, 4, ..., n) %d1 = tensor.dim %Acoo, %c1 : tensor %x = tensor.generate %d1 { ^bb0(%i : index): %k = arith.addi %i, %c1 : index %j = arith.index_cast %k : index to i64 %f = arith.uitofp %j : i64 to f64 tensor.yield %f : f64 } : tensor // Initialize dense vectors to m zeros and m ones. %d0 = tensor.dim %Acoo, %c0 : tensor %y0 = tensor.generate %d0 { ^bb0(%i : index): tensor.yield %f0 : f64 } : tensor %y1 = tensor.generate %d0 { ^bb0(%i : index): tensor.yield %f1 : f64 } : tensor // Call the kernels. %0 = call @matvecCOO(%Acoo, %x, %y0) : (tensor, tensor, tensor) -> tensor %1 = call @matvecCSR(%Acsr, %x, %y0) : (tensor, tensor, tensor) -> tensor %2 = call @matvecCSC(%Acsc, %x, %y0) : (tensor, tensor, tensor) -> tensor %3 = call @matvecCOO(%Acoo, %x, %y1) : (tensor, tensor, tensor) -> tensor %4 = call @matvecCSR(%Acsr, %x, %y1) : (tensor, tensor, tensor) -> tensor %5 = call @matvecCSC(%Acsc, %x, %y1) : (tensor, tensor, tensor) -> tensor // // Sanity check on the results. // // CHECK-COUNT-3: ( 87360, 89440, 91520, 93600, 95680, 97760, 99840, 101920, 104000, 106080, 108160, 110240, 112320, 114400, 116480, 118560, 120640, 122720, 124800, 126880, 128960, 131040, 133120, 135200, 137280, 139360, 141440, 143520, 145600, 147680, 149760, 151840, 153920, 156000, 158080, 160160, 162240, 164320, 166400, 168480, 170560, 172640, 174720, 176800, 178880, 180960, 183040, 185120, 187200, 189280, 191360, 193440, 195520, 197600, 199680, 201760, 203840, 205920, 208000, 210080, 212160, 214240, 216320, 218400 ) // // CHECK-COUNT-3: ( 87361, 89441, 91521, 93601, 95681, 97761, 99841, 101921, 104001, 106081, 108161, 110241, 112321, 114401, 116481, 118561, 120641, 122721, 124801, 126881, 128961, 131041, 133121, 135201, 137281, 139361, 141441, 143521, 145601, 147681, 149761, 151841, 153921, 156001, 158081, 160161, 162241, 164321, 166401, 168481, 170561, 172641, 174721, 176801, 178881, 180961, 183041, 185121, 187201, 189281, 191361, 193441, 195521, 197601, 199681, 201761, 203841, 205921, 208001, 210081, 212161, 214241, 216321, 218401 ) // %pb0 = vector.transfer_read %0[%c0], %f0 : tensor, vector<64xf64> vector.print %pb0 : vector<64xf64> %pb1 = vector.transfer_read %1[%c0], %f0 : tensor, vector<64xf64> vector.print %pb1 : vector<64xf64> %pb2 = vector.transfer_read %2[%c0], %f0 : tensor, vector<64xf64> vector.print %pb2 : vector<64xf64> %pb3 = vector.transfer_read %3[%c0], %f0 : tensor, vector<64xf64> vector.print %pb3 : vector<64xf64> %pb4 = vector.transfer_read %4[%c0], %f0 : tensor, vector<64xf64> vector.print %pb4 : vector<64xf64> %pb5 = vector.transfer_read %5[%c0], %f0 : tensor, vector<64xf64> vector.print %pb5 : vector<64xf64> // Release the resources. bufferization.dealloc_tensor %Acoo : tensor bufferization.dealloc_tensor %Acsr : tensor bufferization.dealloc_tensor %Acsc : tensor llvm.call @mgpuDestroySparseEnv() : () -> () return } }