// // NOTE: this test requires gpu-sm80 // // RUN: mlir-opt %s \ // RUN: --sparsifier="enable-runtime-library=false parallelization-strategy=dense-outer-loop gpu-triple=nvptx64-nvidia-cuda gpu-chip=sm_80 gpu-features=+ptx71 gpu-format=%gpu_compilation_format" \ // RUN: | mlir-cpu-runner \ // RUN: --shared-libs=%mlir_cuda_runtime \ // RUN: --shared-libs=%mlir_c_runner_utils \ // RUN: --e main --entry-point-result=void \ // RUN: | FileCheck %s #CSR = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed) }> module { // Compute matrix vector y = Ax func.func @matvec(%A: tensor, %x: tensor, %y_in: tensor) -> tensor { %y_out = linalg.matvec ins(%A, %x: tensor, tensor) outs(%y_in: tensor) -> tensor return %y_out : tensor } func.func @main() { %f0 = arith.constant 0.0 : f64 %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index // Stress test with a dense matrix DA. %DA = tensor.generate { ^bb0(%i: index, %j: index): %k = arith.addi %i, %j : index %l = arith.index_cast %k : index to i64 %f = arith.uitofp %l : i64 to f64 tensor.yield %f : f64 } : tensor<1024x64xf64> // Convert to a "sparse" m x n matrix A. %A = sparse_tensor.convert %DA : tensor<1024x64xf64> to tensor // Initialize dense vector with n elements: // (1, 2, 3, 4, ..., n) %d1 = tensor.dim %A, %c1 : tensor %x = tensor.generate %d1 { ^bb0(%i : index): %k = arith.addi %i, %c1 : index %j = arith.index_cast %k : index to i64 %f = arith.uitofp %j : i64 to f64 tensor.yield %f : f64 } : tensor // Initialize dense vector to m zeros. %d0 = tensor.dim %A, %c0 : tensor %y = tensor.generate %d0 { ^bb0(%i : index): tensor.yield %f0 : f64 } : tensor // Call the kernel. %0 = call @matvec(%A, %x, %y) : (tensor, tensor, tensor) -> tensor // // Sanity check on results. // // CHECK: ( 87360, 89440, 91520, 93600, 95680, 97760, 99840, 101920, 104000, 106080, 108160, 110240, 112320, 114400, 116480, 118560, 120640, 122720, 124800, 126880, 128960, 131040, 133120, 135200, 137280, 139360, 141440, 143520, 145600, 147680, 149760, 151840, 153920, 156000, 158080, 160160, 162240, 164320, 166400, 168480, 170560, 172640, 174720, 176800, 178880, 180960, 183040, 185120, 187200, 189280, 191360, 193440, 195520, 197600, 199680, 201760, 203840, 205920, 208000, 210080, 212160, 214240, 216320, 218400 ) // %pb0 = vector.transfer_read %0[%c0], %f0 : tensor, vector<64xf64> vector.print %pb0 : vector<64xf64> // Release the resources. bufferization.dealloc_tensor %A : tensor return } }