# RUN: %PYTHON -m mlir.dialects.linalg.opdsl.dump_oplib --file %s | FileCheck %s from mlir.dialects.linalg.opdsl.lang import * # Verify that simple case with iteration order defined lexically and reduction # dims auto discovered emits the right shape, indexing maps and iterator types. # CHECK: --- # CHECK-LABEL: matmul # CHECK: shape_map: affine_map<()[s0, s1, s2] -> (s0, s1)> # CHECK: shape_map: affine_map<()[s0, s1, s2] -> (s1, s2)> # CHECK: shape_map: affine_map<()[s0, s1, s2] -> (s0, s2)> # CHECK: static_indexing_maps: # CHECK-NEXT: - affine_map<(d0, d1, d2)[s0, s1, s2] -> (d0, d2)> # CHECK-NEXT: - affine_map<(d0, d1, d2)[s0, s1, s2] -> (d2, d1)> # CHECK-NEXT: - affine_map<(d0, d1, d2)[s0, s1, s2] -> (d0, d1)> # CHECK: iterator_types: # CHECK-NEXT: - parallel # CHECK-NEXT: - parallel # CHECK-NEXT: - reduction @linalg_structured_op def matmul( A=TensorDef(T, S.M, S.K), B=TensorDef(T, S.K, S.N), C=TensorDef(U, S.M, S.N, output=True), ): domain(D.m, D.n, D.k) C[D.m, D.n] += TypeFn.cast_signed(U, A[D.m, D.k]) * TypeFn.cast_signed( U, B[D.k, D.n] ) # Verifies that assignment to a scalar (represented as [None]) is represented # correctly. # CHECK: --- # CHECK-LABEL: dot # CHECK: shape_map: affine_map<()[s0] -> (s0)> # CHECK: shape_map: affine_map<()[s0] -> (s0)> # CHECK: shape_map: affine_map<()[s0] -> ()> # CHECK: static_indexing_maps: # CHECK-NEXT: - affine_map<(d0)[s0] -> (d0)> # CHECK-NEXT: - affine_map<(d0)[s0] -> (d0)> # CHECK-NEXT: - affine_map<(d0)[s0] -> ()> # CHECK: iterator_types: # CHECK-NEXT: - reduction @linalg_structured_op def dot(A=TensorDef(T, S.M), B=TensorDef(T, S.M), C=TensorDef(U, output=True)): C[None] += TypeFn.cast_signed(U, A[D.m]) * TypeFn.cast_signed(U, B[D.m]) # Verifies that the index_dims of shape-only operands translate to correct # indexing maps. # CHECK: --- # CHECK-LABEL: pool # CHECK: shape_map: affine_map<()[s0, s1, s2] -> (s0)> # CHECK: shape_map: affine_map<()[s0, s1, s2] -> (s1)> # CHECK: shape_map: affine_map<()[s0, s1, s2] -> (s2)> # CHECK: static_indexing_maps: # CHECK-NEXT: - affine_map<(d0, d1)[s0, s1, s2] -> (d0 * 2 + d1)> # CHECK-NEXT: - affine_map<(d0, d1)[s0, s1, s2] -> (d1)> # CHECK-NEXT: - affine_map<(d0, d1)[s0, s1, s2] -> (d0)> # CHECK: iterator_types: # CHECK-NEXT: - parallel # CHECK-NEXT: - reduction @linalg_structured_op def pool( I=TensorDef(T, S.I), K=TensorDef(T, S.K, index_dims=[D.k]), O=TensorDef(U, S.O, output=True), ): domain(D.o, D.k) O[D.o] += TypeFn.cast_signed(U, I[D.o * 2 + D.k])