//===- DialectConversion.cpp - MLIR dialect conversion generic pass -------===// // // Copyright 2019 The MLIR Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // ============================================================================= #include "mlir/Transforms/DialectConversion.h" #include "mlir/IR/BlockAndValueMapping.h" #include "mlir/IR/Builders.h" #include "mlir/IR/Function.h" #include "mlir/IR/Module.h" #include "mlir/Transforms/Utils.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" using namespace mlir; #define DEBUG_TYPE "dialect-conversion" //===----------------------------------------------------------------------===// // ArgConverter //===----------------------------------------------------------------------===// namespace { /// This class provides a simple interface for converting the types of block /// arguments. This is done by inserting fake cast operations for the illegal /// type that allow for updating the real type to return the correct type. struct ArgConverter { ArgConverter(MLIRContext *ctx) : castOpName(kCastName, ctx), loc(UnknownLoc::get(ctx)) {} /// Cleanup and undo any generated conversion values. void discardRewrites() { // On failure drop all uses of the cast operation and destroy it. for (auto *op : castOps) { op->getResult(0)->dropAllUses(); op->destroy(); } castOps.clear(); } /// Replace usages of the cast operations with the argument directly. void applyRewrites() { // On success, we update the type of the block argument and replace uses of // the cast. for (auto *op : castOps) { op->getOperand(0)->setType(op->getResult(0)->getType()); op->getResult(0)->replaceAllUsesWith(op->getOperand(0)); op->destroy(); } } /// Generate a cast operation for 'arg' that produces the new, legal, type. void castArgument(BlockArgument *arg, Type newType, BlockAndValueMapping &mapping) { // Otherwise, generate a new cast operation for the given value type. auto *cast = Operation::create(loc, castOpName, arg, newType, llvm::None, llvm::None, 0, false, arg->getContext()); // Replace the uses of the argument and record the mapping. mapping.map(arg, cast->getResult(0)); castOps.push_back(cast); } /// This is an operation name for a fake operation that is inserted during the /// conversion process. Operations of this type are guaranteed to never escape /// the converter. static constexpr StringLiteral kCastName = "__mlir_conversion.cast"; OperationName castOpName; /// This is a collection of cast values that were generated during the /// conversion process. std::vector castOps; /// An instance of the unknown location that is used when generating /// producers. UnknownLoc loc; }; constexpr StringLiteral ArgConverter::kCastName; //===----------------------------------------------------------------------===// // DialectConversionRewriter //===----------------------------------------------------------------------===// /// This class contains a snapshot of the current conversion rewriter state. /// This is useful when saving and undoing a set of rewrites. struct RewriterState { RewriterState(unsigned numCreatedOperations, unsigned numReplacements, unsigned numBlockActions) : numCreatedOperations(numCreatedOperations), numReplacements(numReplacements), numBlockActions(numBlockActions) {} /// The current number of created operations. unsigned numCreatedOperations; /// The current number of replacements queued. unsigned numReplacements; /// The current number of block actions performed. unsigned numBlockActions; }; /// This class implements a pattern rewriter for ConversionPattern /// patterns. It automatically performs remapping of replaced operation values. struct DialectConversionRewriter final : public PatternRewriter { /// This class represents one requested operation replacement via 'replaceOp'. struct OpReplacement { OpReplacement() = default; OpReplacement(Operation *op, ArrayRef newValues) : op(op), newValues(newValues.begin(), newValues.end()) {} Operation *op; SmallVector newValues; }; /// The kind of the block action performed during the rewrite. Actions can be /// undone if the conversion fails. enum class BlockActionKind { Split, Move }; /// Original position of the given block in its parent region. We cannot use /// a region iterator because it could have been invalidated by other region /// operations since the position was stored. struct BlockPosition { Region *region; Region::iterator::difference_type position; }; /// The storage class for an undoable block action (one of BlockActionKind), /// contains the information necessary to undo this action. struct BlockAction { // A pointer to the block that was created by the action. Block *block; union { // In use if kind == BlockActionKind::Move and contains a pointer to the // region that originally contained the block as well as the position of // the block in that region. BlockPosition originalPosition; // In use if kind == BlockActionKind::Split and contains a pointer to the // block that was split into two parts. Block *originalBlock; }; BlockActionKind kind; }; DialectConversionRewriter(Region ®ion) : PatternRewriter(region), argConverter(region.getContext()) {} ~DialectConversionRewriter() = default; /// Return the current state of the rewriter. RewriterState getCurrentState() { return RewriterState(createdOps.size(), replacements.size(), blockActions.size()); } /// Reset the state of the rewriter to a previously saved point. void resetState(RewriterState state) { // Reset any replaced operations and undo any saved mappings. for (auto &repl : llvm::drop_begin(replacements, state.numReplacements)) for (auto *result : repl.op->getResults()) mapping.erase(result); replacements.resize(state.numReplacements); // Pop all of the newly created operations. while (createdOps.size() != state.numCreatedOperations) createdOps.pop_back_val()->erase(); // Undo any block operations. undoBlockActions(state.numBlockActions); } /// Undo the block actions (motions, splits) one by one in reverse order until /// "numActionsToKeep" actions remains. void undoBlockActions(unsigned numActionsToKeep = 0) { for (auto &action : llvm::reverse(llvm::drop_begin(blockActions, numActionsToKeep))) { switch (action.kind) { // Merge back the block that was split out. case BlockActionKind::Split: { action.originalBlock->getOperations().splice( action.originalBlock->end(), action.block->getOperations()); action.block->erase(); break; } // Move the block back to its original position. case BlockActionKind::Move: { Region *originalRegion = action.originalPosition.region; originalRegion->getBlocks().splice( std::next(originalRegion->begin(), action.originalPosition.position), action.block->getParent()->getBlocks(), action.block); break; } } } } /// Cleanup and destroy any generated rewrite operations. This method is /// invoked when the conversion process fails. void discardRewrites() { argConverter.discardRewrites(); // Remove any newly created ops. for (auto *op : createdOps) { op->dropAllDefinedValueUses(); op->erase(); } undoBlockActions(); } /// Apply all requested operation rewrites. This method is invoked when the /// conversion process succeeds. void applyRewrites() { // Apply all of the rewrites replacements requested during conversion. for (auto &repl : replacements) { for (unsigned i = 0, e = repl.newValues.size(); i != e; ++i) repl.op->getResult(i)->replaceAllUsesWith(repl.newValues[i]); repl.op->erase(); } argConverter.applyRewrites(); } /// PatternRewriter hook for replacing the results of an operation. void replaceOp(Operation *op, ArrayRef newValues, ArrayRef valuesToRemoveIfDead) override { assert(newValues.size() == op->getNumResults()); // Create mappings for each of the new result values. for (unsigned i = 0, e = newValues.size(); i < e; ++i) { assert((newValues[i] || op->getResult(i)->use_empty()) && "result value has remaining uses that must be replaced"); if (newValues[i]) mapping.map(op->getResult(i), newValues[i]); } // Record the requested operation replacement. replacements.emplace_back(op, newValues); } /// PatternRewriter hook for splitting a block into two parts. Block *splitBlock(Block *block, Block::iterator before) override { auto *continuation = PatternRewriter::splitBlock(block, before); BlockAction action; action.kind = BlockActionKind::Split; action.block = continuation; action.originalBlock = block; blockActions.push_back(action); return continuation; } /// PatternRewriter hook for moving blocks out of a region. void inlineRegionBefore(Region ®ion, Region::iterator before) override { for (auto &pair : llvm::enumerate(region)) { Block &block = pair.value(); unsigned position = pair.index(); BlockAction action; action.kind = BlockActionKind::Move; action.block = █ action.originalPosition = {®ion, position}; blockActions.push_back(action); } PatternRewriter::inlineRegionBefore(region, before); } /// PatternRewriter hook for creating a new operation. Operation *createOperation(const OperationState &state) override { auto *result = OpBuilder::createOperation(state); createdOps.push_back(result); return result; } /// PatternRewriter hook for updating the root operation in-place. void notifyRootUpdated(Operation *op) override { // The rewriter caches changes to the IR to allow for operating in-place and // backtracking. The rewrite is currently not capable of backtracking // in-place modifications. llvm_unreachable("in-place operation updates are not supported"); } /// Remap the given operands to those with potentially different types. void remapValues(Operation::operand_range operands, SmallVectorImpl &remapped) { remapped.reserve(llvm::size(operands)); for (Value *operand : operands) remapped.push_back(mapping.lookupOrDefault(operand)); } // Mapping between replaced values that differ in type. This happens when // replacing a value with one of a different type. BlockAndValueMapping mapping; /// Utility used to convert block arguments. ArgConverter argConverter; /// Ordered vector of all of the newly created operations during conversion. SmallVector createdOps; /// Ordered vector of any requested operation replacements. SmallVector replacements; /// Ordered list of block operations (creations, splits, motions). SmallVector blockActions; }; } // end anonymous namespace //===----------------------------------------------------------------------===// // ConversionPattern //===----------------------------------------------------------------------===// /// Attempt to match and rewrite the IR root at the specified operation. PatternMatchResult ConversionPattern::matchAndRewrite(Operation *op, PatternRewriter &rewriter) const { SmallVector operands; auto &dialectRewriter = static_cast(rewriter); dialectRewriter.remapValues(op->getOperands(), operands); // If this operation has no successors, invoke the rewrite directly. if (op->getNumSuccessors() == 0) return matchAndRewrite(op, operands, rewriter); // Otherwise, we need to remap the successors. SmallVector destinations; destinations.reserve(op->getNumSuccessors()); SmallVector, 2> operandsPerDestination; unsigned firstSuccessorOperand = op->getSuccessorOperandIndex(0); for (unsigned i = 0, seen = 0, e = op->getNumSuccessors(); i < e; ++i) { destinations.push_back(op->getSuccessor(i)); // Lookup the successors operands. unsigned n = op->getNumSuccessorOperands(i); operandsPerDestination.push_back( llvm::makeArrayRef(operands.data() + firstSuccessorOperand + seen, n)); seen += n; } // Rewrite the operation. return matchAndRewrite( op, llvm::makeArrayRef(operands.data(), operands.data() + firstSuccessorOperand), destinations, operandsPerDestination, rewriter); } //===----------------------------------------------------------------------===// // OperationLegalizer //===----------------------------------------------------------------------===// namespace { /// A set of rewrite patterns that can be used to legalize a given operation. using LegalizationPatterns = SmallVector; /// This class defines a recursive operation legalizer. class OperationLegalizer { public: OperationLegalizer(ConversionTarget &targetInfo, OwningRewritePatternList &patterns) : target(targetInfo) { buildLegalizationGraph(patterns); } /// Attempt to legalize the given operation. Returns success if the operation /// was legalized, failure otherwise. LogicalResult legalize(Operation *op, DialectConversionRewriter &rewriter); private: /// Attempt to legalize the given operation by applying the provided pattern. /// Returns success if the operation was legalized, failure otherwise. LogicalResult legalizePattern(Operation *op, RewritePattern *pattern, DialectConversionRewriter &rewriter); /// Build an optimistic legalization graph given the provided patterns. This /// function populates 'legalizerPatterns' with the operations that are not /// directly legal, but may be transitively legal for the current target given /// the provided patterns. void buildLegalizationGraph(OwningRewritePatternList &patterns); /// The current set of patterns that have been applied. llvm::SmallPtrSet appliedPatterns; /// The set of legality information for operations transitively supported by /// the target. DenseMap legalizerPatterns; /// The legalization information provided by the target. ConversionTarget ⌖ }; } // namespace LogicalResult OperationLegalizer::legalize(Operation *op, DialectConversionRewriter &rewriter) { LLVM_DEBUG(llvm::dbgs() << "Legalizing operation : " << op->getName() << "\n"); // Check if this was marked legal by the target. if (auto action = target.getOpAction(op->getName())) { // Check if this operation is always legal. if (*action == ConversionTarget::LegalizationAction::Legal) return success(); // Otherwise, handle dynamic legalization. LLVM_DEBUG(llvm::dbgs() << "- Trying dynamic legalization.\n"); if (target.isLegal(op)) return success(); // Fallthough to see if a pattern can convert this into a legal operation. } // Otherwise, we need to apply a legalization pattern to this operation. auto it = legalizerPatterns.find(op->getName()); if (it == legalizerPatterns.end()) { LLVM_DEBUG(llvm::dbgs() << "-- FAIL : no known legalization path.\n"); return failure(); } // TODO(riverriddle) This currently has no cost model and doesn't prioritize // specific patterns in any way. for (auto *pattern : it->second) if (succeeded(legalizePattern(op, pattern, rewriter))) return success(); LLVM_DEBUG(llvm::dbgs() << "-- FAIL : no matched legalization pattern.\n"); return failure(); } LogicalResult OperationLegalizer::legalizePattern(Operation *op, RewritePattern *pattern, DialectConversionRewriter &rewriter) { LLVM_DEBUG({ llvm::dbgs() << "-* Applying rewrite pattern '" << op->getName() << " -> ("; interleaveComma(pattern->getGeneratedOps(), llvm::dbgs()); llvm::dbgs() << ")'.\n"; }); // Ensure that we don't cycle by not allowing the same pattern to be // applied twice in the same recursion stack. // TODO(riverriddle) We could eventually converge, but that requires more // complicated analysis. if (!appliedPatterns.insert(pattern).second) { LLVM_DEBUG(llvm::dbgs() << "-- FAIL: Pattern was already applied.\n"); return failure(); } RewriterState curState = rewriter.getCurrentState(); auto cleanupFailure = [&] { // Reset the rewriter state and pop this pattern. rewriter.resetState(curState); appliedPatterns.erase(pattern); return failure(); }; // Try to rewrite with the given pattern. rewriter.setInsertionPoint(op); if (!pattern->matchAndRewrite(op, rewriter)) { LLVM_DEBUG(llvm::dbgs() << "-- FAIL: Pattern failed to match.\n"); return cleanupFailure(); } // Recursively legalize each of the new operations. for (unsigned i = curState.numCreatedOperations, e = rewriter.createdOps.size(); i != e; ++i) { if (failed(legalize(rewriter.createdOps[i], rewriter))) { LLVM_DEBUG(llvm::dbgs() << "-- FAIL: Generated operation was illegal.\n"); return cleanupFailure(); } } appliedPatterns.erase(pattern); return success(); } void OperationLegalizer::buildLegalizationGraph( OwningRewritePatternList &patterns) { // A mapping between an operation and a set of operations that can be used to // generate it. DenseMap> parentOps; // A mapping between an operation and any currently invalid patterns it has. DenseMap> invalidPatterns; // A worklist of patterns to consider for legality. llvm::SetVector patternWorklist; // Build the mapping from operations to the parent ops that may generate them. for (auto &pattern : patterns) { auto root = pattern->getRootKind(); // Skip operations that are always known to be legal. if (target.getOpAction(root) == ConversionTarget::LegalizationAction::Legal) continue; // Add this pattern to the invalid set for the root op and record this root // as a parent for any generated operations. invalidPatterns[root].insert(pattern.get()); for (auto op : pattern->getGeneratedOps()) parentOps[op].insert(root); // Add this pattern to the worklist. patternWorklist.insert(pattern.get()); } while (!patternWorklist.empty()) { auto *pattern = patternWorklist.pop_back_val(); // Check to see if any of the generated operations are invalid. if (llvm::any_of(pattern->getGeneratedOps(), [&](OperationName op) { return !legalizerPatterns.count(op) && !target.getOpAction(op); })) continue; // Otherwise, if all of the generated operation are valid, this op is now // legal so add all of the child patterns to the worklist. legalizerPatterns[pattern->getRootKind()].push_back(pattern); invalidPatterns[pattern->getRootKind()].erase(pattern); // Add any invalid patterns of the parent operations to see if they have now // become legal. for (auto op : parentOps[pattern->getRootKind()]) patternWorklist.set_union(invalidPatterns[op]); } } //===----------------------------------------------------------------------===// // FunctionConverter //===----------------------------------------------------------------------===// namespace { // This class converts a single function using the given pattern matcher. If a // TypeConverter object is provided, then the types of block arguments will be // converted using the appropriate 'convertType' calls. struct FunctionConverter { explicit FunctionConverter(MLIRContext *ctx, ConversionTarget &target, OwningRewritePatternList &patterns, TypeConverter *conversion = nullptr) : typeConverter(conversion), opLegalizer(target, patterns) {} /// Converts the given function to the dialect using hooks defined in /// `typeConverter`. Returns failure on error, success otherwise. LogicalResult convertFunction(Function *f); /// Converts the given region starting from the entry block and following the /// block successors. Returns failure on error, success otherwise. Prints /// error messages at `loc`. LogicalResult convertRegion(DialectConversionRewriter &rewriter, Region ®ion, Location loc); /// Converts a block by traversing its operations sequentially, attempting to /// match a pattern. If there is no match, recurses the operations regions if /// it has any. // /// After converting operations, traverses the successor blocks unless they /// have been visited already as indicated in `visitedBlocks`. LogicalResult convertBlock(DialectConversionRewriter &rewriter, Block *block, DenseSet &visitedBlocks); /// Converts the type of the given block argument. Returns success if the /// argument type could be successfully converted, failure otherwise. LogicalResult convertArgument(DialectConversionRewriter &rewriter, BlockArgument *arg, Location loc); /// Pointer to a specific dialect conversion info. TypeConverter *typeConverter; /// The legalizer to use when converting operations. OperationLegalizer opLegalizer; }; } // end anonymous namespace LogicalResult FunctionConverter::convertArgument(DialectConversionRewriter &rewriter, BlockArgument *arg, Location loc) { auto convertedType = typeConverter->convertType(arg->getType()); if (!convertedType) return arg->getContext()->emitError(loc) << "could not convert block argument of type : " << arg->getType(); // Generate a replacement value, with the new type, for this argument. if (convertedType != arg->getType()) rewriter.argConverter.castArgument(arg, convertedType, rewriter.mapping); return success(); } LogicalResult FunctionConverter::convertBlock(DialectConversionRewriter &rewriter, Block *block, DenseSet &visitedBlocks) { // First, add the current block to the list of visited blocks. visitedBlocks.insert(block); if (block->empty()) return success(); // Preserve the successors before rewriting the operations. SmallVector successors(block->getSuccessors()); // Iterate over ops and convert them. Since the conversion may split the // block, we eagerly take the pointer to the next operation in it. Splitting // moves the operations from one block to another, so this will keep // considering the original list of operations independently of the block // within which they are currently located. This relies on iplist node API // to get the next node in the list witout knowing which list it is, iterators // are unsuitable because block splitting invalidates all iterators following // the current one. Any operation inserted by the conversion, independently of // its parent block, will be recursively legalized independently of this // function. Operation *current = &block->front(); Operation *next = nullptr; do { next = current->getNextNode(); // Traverse any held regions. for (auto ®ion : current->getRegions()) if (!region.empty() && failed(convertRegion(rewriter, region, current->getLoc()))) return failure(); // Legalize the current operation. (void)opLegalizer.legalize(current, rewriter); } while ((current = next)); // Recurse to children that haven't been visited. for (Block *succ : successors) { if (visitedBlocks.count(succ)) continue; if (failed(convertBlock(rewriter, succ, visitedBlocks))) return failure(); } return success(); } LogicalResult FunctionConverter::convertRegion(DialectConversionRewriter &rewriter, Region ®ion, Location loc) { assert(!region.empty() && "expected non-empty region"); // Create the arguments of each of the blocks in the region. If a type // converter was not provided, then we don't need to change any of the block // types. if (typeConverter) { for (Block &block : region) for (auto *arg : block.getArguments()) if (failed(convertArgument(rewriter, arg, loc))) return failure(); } // Store the number of blocks before conversion (new blocks may be added due // to splits or moves, but the operations in them will be processed // elsewhere). unsigned numBlocks = std::distance(region.begin(), region.end()); // Start a DFS-order traversal of the CFG to make sure defs are converted // before uses in dominated blocks. llvm::DenseSet visitedBlocks; if (failed(convertBlock(rewriter, ®ion.front(), visitedBlocks))) return failure(); // If some blocks are not reachable through successor chains, they should have // been removed by the DCE before this. if (visitedBlocks.size() != numBlocks) return rewriter.getContext()->emitError(loc) << "unreachable blocks were not converted"; return success(); } LogicalResult FunctionConverter::convertFunction(Function *f) { // If this is an external function, there is nothing else to do. if (f->isExternal()) return success(); // Rewrite the function body. DialectConversionRewriter rewriter(f->getBody()); if (failed(convertRegion(rewriter, f->getBody(), f->getLoc()))) { // Reset any of the generated rewrites. rewriter.discardRewrites(); return failure(); } // Otherwise the conversion succeeded, so apply all rewrites. rewriter.applyRewrites(); return success(); } //===----------------------------------------------------------------------===// // TypeConverter //===----------------------------------------------------------------------===// // Create a function type with arguments and results converted, and argument // attributes passed through. FunctionType TypeConverter::convertFunctionSignatureType( FunctionType type, ArrayRef argAttrs, SmallVectorImpl &convertedArgAttrs) { SmallVector arguments; SmallVector results; arguments.reserve(type.getNumInputs()); for (auto t : type.getInputs()) arguments.push_back(convertType(t)); results.reserve(type.getNumResults()); for (auto t : type.getResults()) results.push_back(convertType(t)); // Note this will cause an extra allocation only if we need // to grow the caller-provided resulting attribute vector. convertedArgAttrs.reserve(arguments.size()); for (auto attr : argAttrs) convertedArgAttrs.push_back(attr); return FunctionType::get(arguments, results, type.getContext()); } //===----------------------------------------------------------------------===// // ConversionTarget //===----------------------------------------------------------------------===// /// Register a legality action for the given operation. void ConversionTarget::setOpAction(OperationName op, LegalizationAction action) { legalOperations[op] = action; } /// Register a legality action for the given dialects. void ConversionTarget::setDialectAction(ArrayRef dialectNames, LegalizationAction action) { for (StringRef dialect : dialectNames) legalDialects[dialect] = action; } /// Get the legality action for the given operation. auto ConversionTarget::getOpAction(OperationName op) const -> llvm::Optional { // Check for an action for this specific operation. auto it = legalOperations.find(op); if (it != legalOperations.end()) return it->second; // Otherwise, default to checking for an action on the parent dialect. auto dialectIt = legalDialects.find(op.getDialect()); if (dialectIt != legalDialects.end()) return dialectIt->second; return llvm::None; } //===----------------------------------------------------------------------===// // applyConversionPatterns //===----------------------------------------------------------------------===// namespace { /// This class represents a function to be converted. It allows for converting /// the body of functions and the signature in two phases. struct ConvertedFunction { ConvertedFunction(Function *fn, FunctionType newType, ArrayRef newFunctionArgAttrs) : fn(fn), newType(newType), newFunctionArgAttrs(newFunctionArgAttrs.begin(), newFunctionArgAttrs.end()) {} /// The function to convert. Function *fn; /// The new type and argument attributes for the function. FunctionType newType; SmallVector newFunctionArgAttrs; }; } // end anonymous namespace /// Convert the given module with the provided conversion patterns and type /// conversion object. If conversion fails for specific functions, those /// functions remains unmodified. LogicalResult mlir::applyConversionPatterns(Module &module, ConversionTarget &target, TypeConverter &converter, OwningRewritePatternList &&patterns) { std::vector allFunctions; allFunctions.reserve(module.getFunctions().size()); for (auto &func : module) allFunctions.push_back(&func); return applyConversionPatterns(allFunctions, target, converter, std::move(patterns)); } /// Convert the given functions with the provided conversion patterns. This will /// convert as many of the operations within each function as possible given the /// set of patterns. If conversion fails for specific functions, those functions // remains unmodified. LogicalResult mlir::applyConversionPatterns( ArrayRef fns, ConversionTarget &target, TypeConverter &converter, OwningRewritePatternList &&patterns) { if (fns.empty()) return success(); // Build the function converter. FunctionConverter funcConverter(fns.front()->getContext(), target, patterns, &converter); // Try to convert each of the functions within the module. Defer updating the // signatures of the functions until after all of the bodies have been // converted. This allows for the conversion patterns to still rely on the // public signatures of the functions within the module before they are // updated. std::vector toConvert; toConvert.reserve(fns.size()); for (auto *func : fns) { // Convert the function type using the dialect converter. SmallVector newFunctionArgAttrs; FunctionType newType = converter.convertFunctionSignatureType( func->getType(), func->getAllArgAttrs(), newFunctionArgAttrs); if (!newType || !newType.isa()) return func->emitError("could not convert function type"); // Convert the body of this function. if (failed(funcConverter.convertFunction(func))) return failure(); // Add function signature to be updated. toConvert.emplace_back(func, newType.cast(), newFunctionArgAttrs); } // Finally, update the signatures of all of the converted functions. for (auto &it : toConvert) { it.fn->setType(it.newType); it.fn->setAllArgAttrs(it.newFunctionArgAttrs); } return success(); } /// Convert the given function with the provided conversion patterns. This will /// convert as many of the operations within 'fn' as possible given the set of /// patterns. LogicalResult mlir::applyConversionPatterns(Function &fn, ConversionTarget &target, OwningRewritePatternList &&patterns) { // Convert the body of this function. FunctionConverter converter(fn.getContext(), target, patterns); return converter.convertFunction(&fn); }